Difference between revisions of "Vieta's Formulas"

(Introduction)
(Redirected page to Vieta's formulas)
(Tag: New redirect)
 
(35 intermediate revisions by 26 users not shown)
Line 1: Line 1:
'''Vieta's Formulas''', otherwise called Viète's Laws, are a set of [[equation]]s relating the [[root]]s and the [[coefficient]]s of [[polynomial]]s.
+
#REDIRECT[[Vieta's formulas]]
 
 
== Introduction ==
 
 
 
Vieta's Formulas were discovered by the French mathematician [[François Viète]]
 
Vieta's Formulas can be used to relate the sum and product of the roots of a polynomial to its coefficients. The simplest application of this is with quadratics. If we have a quadratic <math>x^2+ax+b=0</math> with solutions <math>p</math> and <math>q</math>, then we know that we can factor it as
 
 
 
<center><math>x^2+ax+b=(x-p)(x-q)</math></center>
 
 
 
(Note that the first term is <math>x^2</math>, not <math>ax^2</math>.) Using the distributive property to expand the right side we get
 
 
 
<center><math>x^2+ax+b=x^2-(p+q)x+pq</math></center>
 
 
 
We know that two polynomials are equal if and only if their coefficients are equal, so <math>x^2+ax+b=x^2-(p+q)x+pq</math> means that <math>a=-(p+q)</math> and <math>b=pq</math>. In other words, the product of the roots is equal to the constant term, and the sum of the roots is the opposite of the coefficient of the <math>x</math> term.
 
 
 
A similar set of relations for cubics can be found by expanding <math>x^3+ax^2+bx+c=(x-p)(x-q)(x-r)</math>.
 
 
 
We can state Vieta's formulas more rigorously and generally. Let <math>P(x)</math> be a polynomial of degree <math>n</math>, so <math>P(x)={a_n}x^n+{a_{n-1}}x^{n-1}+\cdots+{a_1}x+a_0</math>,
 
where the coefficient of <math>x^{i}</math> is <math>{a}_i</math> and <math>a_n \neq 0</math>. As a consequence of the [[Fundamental Theorem of Algebra]], we can also write <math>P(x)=a_n(x-r_1)(x-r_2)\cdots(x-r_n)</math>, where <math>{r}_i</math> are the roots of <math>P(x)</math>.  We thus have that
 
 
 
<center><math> a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 = a_n(x-r_1)(x-r_2)\cdots(x-r_n).</math></center>
 
 
 
Expanding out the right-hand side gives us
 
 
 
<math> a_nx^n - a_n(r_1+r_2+\!\cdots\!+r_n)x^{n-1} + a_n(r_1r_2 + r_1r_3 +\! \cdots\! + r_{n-1}r_n)x^{n-2} +\! \cdots\! + (-1)^na_n r_1r_2\cdots r_n.</math>
 
 
 
The coefficient of <math> x^k </math> in this expression will be the <math>(n-k)</math>-th [[elementary symmetric sum]] of the <math>r_i</math>. 
 
 
 
We now have two different expressions for <math>P(x)</math>.  These must be equal.  However, the only way for two polynomials to be equal for all values of <math>x</math> is for each of their corresponding coefficients to be equal.  So, starting with the coefficient of <math> x^n </math>, we see that
 
 
 
<center><math>a_n = a_n</math></center>
 
<center><math> a_{n-1} = -a_n(r_1+r_2+\cdots+r_n)</math></center>
 
<center><math> a_{n-2} = a_n(r_1r_2+r_1r_3+\cdots+r_{n-1}r_n)</math></center>
 
<center><math>\vdots</math></center>
 
<center><math>a_0 = (-1)^n a_n r_1r_2\cdots r_n</math></center>
 
 
 
More commonly, these are written with the roots on one side and the <math>a_i</math> on the other (this can be arrived at by dividing both sides of all the equations by <math>a_n</math>).
 
 
 
If we denote <math>\sigma_k</math> as the <math>k</math>-th elementary symmetric sum, then we can write those formulas more compactly as <math>\sigma_k = (-1)^k\cdot \frac{a_{n-k}}{a_n{}}</math>, for <math>1\le k\le {n}</math>.
 
 
 
==Problems==
 
===Introduction===
 
* Let <math>r_1,r_2,</math> and <math>r_3</math> be the three roots of the cubic <math>x^3 + 3x^2 + 4x - 4</math>. Find the value of <math>r_1r_2+r_1r_3+r_2r_3</math>.
 
* Suppose the polynomial <math>5x^3 + 4x^2 - 8x + 6</math> has three real roots <math>a,b</math>, and <math>c</math>. Find the value of <math>a(1+b+c)+b(1+a+c)+c(1+a+b)</math>.
 
 
 
===Intermediate===
 
 
 
* Let <math>a</math>, <math>b</math>, and <math>c</math> be positive real numbers with <math>a<b<c</math> such that <math>a+b+c=12</math>, <math>a^2+b^2+c^2=50</math>, and <math>a^3+b^3+c^3=216</math>. Find <math>a+2b+3c</math>.
 
* (USAMTS 2010) Find <math>c>0</math> such that if <math>r</math>, <math>s</math>, and <math>t</math> are the roots of the cubic <cmath>f(x)=x^3-4x^2+6x-c,</cmath> then <cmath>1=\dfrac1{r^2+s^2}+\dfrac1{s^2+t^2}+\dfrac1{t^2+r^2}.</cmath>
 
* (HMMT 2007) The complex numbers <math>\alpha_1</math>, <math>\alpha_2</math>, <math>\alpha_3</math>, and <math>\alpha_4</math> are the four distinct roots of the equation <math>x^4+2x^3+2=0</math>. Determine the unordered set <cmath>\{\alpha_1\alpha_2+\alpha_3\alpha_4,\,\alpha_1\alpha_3+\alpha_2\alpha_4,\,\alpha_1\alpha_4+\alpha_2\alpha_3\}.</cmath>
 
 
 
Bob is dead
 
 
 
== See Also ==
 
 
 
* [[Algebra]]
 
* [[Polynomials]]
 
* [[Newton's Sums]]
 
 
 
== External Links ==
 
*[http://mathworld.wolfram.com/VietasFormulas.html Mathworld's Article]
 
 
 
[[Category:Elementary algebra]]
 

Latest revision as of 13:40, 5 November 2021

Redirect to: