GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2017 AMC 12A Problems"

m (Problem 3: spelling)
(Undo revision 180386 by Abhyu2006 (talk))
(Tag: Undo)
 
(32 intermediate revisions by 11 users not shown)
Line 1: Line 1:
NOTE: AS OF NOW A WORK IN PROGRESS (Problems are not accurate/might not be formatted correctly)
 
 
 
{{AMC12 Problems|year=2017|ab=A}}
 
{{AMC12 Problems|year=2017|ab=A}}
  
Line 52: Line 50:
 
==Problem 7==
 
==Problem 7==
  
Define a function on the positive integers recursively by <math>f(1) = 2</math>, <math>f(n) = f(n-1) + 2</math> if <math>n</math> is even, and <math>f(n) = f(n-2) + 2</math> if <math>n</math> is odd and greater than <math>1</math>. What is <math>f(2017)</math>?
+
Define a function on the positive integers recursively by <math>f(1) = 2</math>, <math>f(n) = f(n-1) + 1</math> if <math>n</math> is even, and <math>f(n) = f(n-2) + 2</math> if <math>n</math> is odd and greater than <math>1</math>. What is <math>f(2017)</math>?
  
 
<math> \textbf{(A)}\ 2017 \qquad\textbf{(B)}\ 2018 \qquad\textbf{(C)}\ 4034 \qquad\textbf{(D)}\ 4035 \qquad\textbf{(E)}\ 4036</math>
 
<math> \textbf{(A)}\ 2017 \qquad\textbf{(B)}\ 2018 \qquad\textbf{(C)}\ 4034 \qquad\textbf{(D)}\ 4035 \qquad\textbf{(E)}\ 4036</math>
Line 62: Line 60:
 
The region consisting of all points in three-dimensional space within <math>3</math> units of line segment <math>\overline{AB}</math> has volume <math>216 \pi</math>. What is the length <math>AB</math>?
 
The region consisting of all points in three-dimensional space within <math>3</math> units of line segment <math>\overline{AB}</math> has volume <math>216 \pi</math>. What is the length <math>AB</math>?
  
<math> \textbf{(A)}\ 6 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 18 \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 14</math>
+
<math> \textbf{(A)}\ 6 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 18 \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 24</math>
  
 
[[2017 AMC 12A  Problems/Problem 8|Solution]]
 
[[2017 AMC 12A  Problems/Problem 8|Solution]]
Line 84: Line 82:
 
==Problem 11==
 
==Problem 11==
  
Each of the <math>100</math> students in a certain summer camp can either sing, dance, or act. Some students have more than one talent, but no student has all three talents. There are <math>42</math> students who cannot sing, <math>65</math> students who cannot dance, and <math>29</math> students who cannot act. How many students have two of these talents?
+
Claire adds the degree measures of the interior angles of a convex polygon and arrives at a sum of <math>2017</math>. She then discovers that she forgot to include one angle. What is the degree measure of the forgotten angle?
  
<math>\textbf{(A)}\ 16\qquad\textbf{(B)}\ 25\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 49\qquad\textbf{(E)}\ 64</math>
+
<math>\textbf{(A)}\ 37\qquad\textbf{(B)}\ 63\qquad\textbf{(C)}\ 117\qquad\textbf{(D)}\ 143\qquad\textbf{(E)}\ 163</math>
  
 
[[2017 AMC 12A  Problems/Problem 11|Solution]]
 
[[2017 AMC 12A  Problems/Problem 11|Solution]]
Line 92: Line 90:
 
==Problem 12==
 
==Problem 12==
  
In <math>\triangle ABC</math>, <math>AB = 6</math>, <math>BC = 7</math>, and <math>CA = 8</math>. Point <math>D</math> lies on <math>\overline{BC}</math>, and <math>\overline{AD}</math> bisects <math>\angle BAC</math>. Point <math>E</math> lies on <math>\overline{AC}</math>, and <math>\overline{BE}</math> bisects <math>\angle ABC</math>. The bisectors intersect at <math>F</math>. What is the ratio <math>AF</math> : <math>FD</math>?
+
There are <math>10</math> horses, named Horse 1, Horse 2, <math>\ldots</math>, Horse 10. They get their names from how many minutes it takes them to run one lap around a circular race track: Horse <math>k</math> runs one lap in exactly <math>k</math> minutes. At time 0 all the horses are together at the starting point on the track. The horses start running in the same direction, and they keep running around the circular track at their constant speeds. The least time <math>S > 0</math>, in minutes, at which all <math>10</math> horses will again simultaneously be at the starting point is <math>S = 2520</math>. Let  <math>T>0</math> be the least time, in minutes, such that at least <math>5</math> of the horses are again at the starting point. What is the sum of the digits of  <math>T</math>?
  
<asy>
+
<math>\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 6</math>
pair A = (0,0), B=(6,0), C=intersectionpoints(Circle(A,8),Circle(B,7))[0], F=incenter(A,B,C), D=extension(A,F,B,C),E=extension(B,F,A,C);
 
draw(A--B--C--A--D^^B--E);
 
label("$A$",A,SW);
 
label("$B$",B,SE);
 
label("$C$",C,N);
 
label("$D$",D,NE);
 
label("$E$",E,NW);
 
label("$F$",F,1.5*N);
 
</asy>
 
 
 
<math>\textbf{(A)}\ 3:2\qquad\textbf{(B)}\ 5:3\qquad\textbf{(C)}\ 2:1\qquad\textbf{(D)}\ 7:3\qquad\textbf{(E)}\ 5:2</math>
 
  
 
[[2017 AMC 12A  Problems/Problem 12|Solution]]
 
[[2017 AMC 12A  Problems/Problem 12|Solution]]
Line 111: Line 98:
 
==Problem 13==
 
==Problem 13==
  
Let <math>N</math> be a positive multiple of <math>5</math>. One red ball and <math>N</math> green balls are arranged in a line in random order. Let <math>P(N)</math> be the probability that at least <math>\tfrac{3}{5}</math> of the green balls are on the same side of the red ball. Observe that <math>P(5)=1</math> and that <math>P(N)</math> approaches <math>\tfrac{4}{5}</math> as <math>N</math> grows large. What is the sum of the digits of the least value of <math>N</math> such that <math>P(N) < \tfrac{321}{400}</math>?
+
Driving at a constant speed, Sharon usually takes <math>180</math> minutes to drive from her house to her mother's house. One day Sharon begins the drive at her usual speed, but after driving <math>\frac{1}{3}</math> of the way, she hits a bad snowstorm and reduces her speed by <math>20</math> miles per hour. This time the trip takes her a total of <math>276</math> minutes. How many miles is the drive from Sharon's house to her mother's house?
  
<math>\textbf{(A)}\ 12\qquad\textbf{(B)}\ 14\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 20</math>
+
<math>\textbf{(A)}\ 132 \qquad\textbf{(B)}\ 135 \qquad\textbf{(C)}\ 138 \qquad\textbf{(D)}\ 141 \qquad\textbf{(E)}\ 144</math>
  
 
[[2017 AMC 12A  Problems/Problem 13|Solution]]
 
[[2017 AMC 12A  Problems/Problem 13|Solution]]
Line 119: Line 106:
 
==Problem 14==
 
==Problem 14==
  
Each vertex of a cube is to be labeled with an integer from <math>1</math> through <math>8</math>, with each integer being used once, in such a way that the sum of the four numbers on the vertices of a face is the same for each face.  Arrangements that can be obtained from each other through rotations of the cube are considered to be the same.  How many different arrangements are possible?
+
Alice refuses to sit next to either Bob or Carla. Derek refuses to sit next to Eric. How many ways are there for the five of them to sit in a row of <math>5</math> chairs under these conditions?
  
<math>\textbf{(A)}\ 1\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 24</math>
+
<math>\textbf{(A)}\ 12  \qquad \textbf{(B)}\ 16 \qquad\textbf{(C)}\ 28 \qquad\textbf{(D)}\ 32 \qquad\textbf{(E)}\ 40</math>
  
 
[[2017 AMC 12A  Problems/Problem 14|Solution]]
 
[[2017 AMC 12A  Problems/Problem 14|Solution]]
Line 127: Line 114:
 
==Problem 15==
 
==Problem 15==
  
Circles with centers <math>P, Q</math> and <math>R</math>, having radii <math>1, 2</math> and <math>3</math>, respectively, lie on the same side of line <math>l</math> and are tangent to <math>l</math> at <math>P', Q'</math> and <math>R'</math>, respectively, with <math>Q'</math> between <math>P'</math> and <math>R'</math>. The circle with center <math>Q</math> is externally tangent to each of the other two circles. What is the area of triangle <math>PQR</math>?
+
Let <math>f(x) = \sin{x} + 2\cos{x} + 3\tan{x}</math>, using radian measure for the variable <math>x</math>. In what interval does the smallest positive value of <math>x</math> for which <math>f(x) = 0</math> lie?
  
<math>\textbf{(A) } 0\qquad \textbf{(B) } \sqrt{\frac{2}{3}}\qquad\textbf{(C) } 1\qquad\textbf{(D) } \sqrt{6}-\sqrt{2}\qquad\textbf{(E) }\sqrt{\frac{3}{2}}</math>
+
<math>\textbf{(A)}\ (0,1)  \qquad \textbf{(B)}\ (1, 2) \qquad\textbf{(C)}\ (2, 3) \qquad\textbf{(D)}\ (3, 4) \qquad\textbf{(E)}\ (4,5)</math>
  
 
[[2017 AMC 12A  Problems/Problem 15|Solution]]
 
[[2017 AMC 12A  Problems/Problem 15|Solution]]
Line 135: Line 122:
 
==Problem 16==
 
==Problem 16==
  
The graphs of <math>y=\log_3 x, y=\log_x 3, y=\log_\frac{1}{3} x,</math> and <math>y=\log_x \dfrac{1}{3}</math> are plotted on the same set of axes. How many points in the plane with positive <math>x</math>-coordinates lie on two or more of the graphs?  
+
In the figure below, semicircles with centers at <math>A</math> and <math>B</math> and with radii 2 and 1, respectively, are drawn in the interior of, and sharing bases with, a semicircle with diameter <math>JK</math>. The two smaller semicircles are externally tangent to each other and internally tangent to the largest semicircle. A circle centered at <math>P</math> is drawn externally tangent to the two smaller semicircles and internally tangent to the largest semicircle. What is the radius of the circle centered at <math>P</math>?
  
<math>\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 6</math>
+
<asy>
 +
size(5cm);
 +
draw(arc((0,0),3,0,180));
 +
draw(arc((2,0),1,0,180));
 +
draw(arc((-1,0),2,0,180));
 +
draw((-3,0)--(3,0));
 +
pair P = (-1,0)+(2+6/7)*dir(36.86989);
 +
draw(circle(P,6/7));
 +
dot((-1,0)); dot((2,0)); dot(P);
 +
</asy>
 +
 
 +
<math> \textbf{(A)}\ \frac{3}{4}
 +
\qquad \textbf{(B)}\ \frac{6}{7}
 +
\qquad\textbf{(C)}\ \frac{\sqrt{3}}{2}
 +
\qquad\textbf{(D)}\ \frac{5}{8}\sqrt{2}
 +
\qquad\textbf{(E)}\ \frac{11}{12} </math>
  
 
[[2017 AMC 12A  Problems/Problem 16|Solution]]
 
[[2017 AMC 12A  Problems/Problem 16|Solution]]
Line 143: Line 145:
 
==Problem 17==
 
==Problem 17==
  
Let <math>ABCD</math> be a square. Let <math>E, F, G</math> and <math>H</math> be the centers, respectively, of equilateral triangles with bases <math>\overline{AB}, \overline{BC}, \overline{CD},</math> and <math>\overline{DA},</math> each exterior to the square. What is the ratio of the area of square <math>EFGH</math> to the area of square <math>ABCD</math>?  
+
There are <math>24</math> different complex numbers <math>z</math> such that <math>z^{24}=1</math>. For how many of these is <math>z^6</math> a real number?
  
<math>\textbf{(A)}\ 1\qquad\textbf{(B)}\ \frac{2+\sqrt{3}}{3} \qquad\textbf{(C)}\ \sqrt{2} \qquad\textbf{(D)}\ \frac{\sqrt{2}+\sqrt{3}}{2} \qquad\textbf{(E)}\ \sqrt{3}</math>
+
<math>\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 24</math>
  
 
[[2017 AMC 12A  Problems/Problem 17|Solution]]
 
[[2017 AMC 12A  Problems/Problem 17|Solution]]
Line 151: Line 153:
 
==Problem 18==
 
==Problem 18==
  
For some positive integer <math>n,</math> the number <math>110n^3</math> has <math>110</math> positive integer divisors, including <math>1</math> and the number <math>110n^3.</math> How many positive integer divisors does the number <math>81n^4</math> have?  
+
Let <math>S(n)</math> equal the sum of the digits of positive integer <math>n</math>. For example, <math>S(1507) = 13</math>. For a particular positive integer <math>n</math>, <math>S(n) = 1274</math>. Which of the following could be the value of <math>S(n+1)</math>?
  
<math>\textbf{(A)}\ 110\qquad\textbf{(B)}\ 191\qquad\textbf{(C)}\ 261\qquad\textbf{(D)}\ 325\qquad\textbf{(E)}\ 425</math>
+
<math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 1239\qquad\textbf{(E)}\ 1265</math>
  
 
[[2017 AMC 12A  Problems/Problem 18|Solution]]
 
[[2017 AMC 12A  Problems/Problem 18|Solution]]
Line 159: Line 161:
 
==Problem 19==
 
==Problem 19==
  
Jerry starts at <math>0</math> on the real number line. He tosses a fair coin <math>8</math> times. When he gets heads, he moves <math>1</math> unit in the positive direction; when he gets tails, he moves <math>1</math> unit in the negative direction. The probability that he reaches <math>4</math> at some time during this process is <math>\frac{a}{b},</math> where <math>a</math> and <math>b</math> are relatively prime positive integers. What is <math>a + b?</math> (For example, he succeeds if his sequence of tosses is <math>HTHHHHHH.</math>)
+
A square with side length <math>x</math> is inscribed in a right triangle with sides of length <math>3</math>, <math>4</math>, and <math>5</math> so that one vertex of the square coincides with the right-angle vertex of the triangle. A square with side length <math>y</math> is inscribed in another right triangle with sides of length <math>3</math>, <math>4</math>, and <math>5</math> so that one side of the square lies on the hypotenuse of the triangle. What is <math>\tfrac{x}{y}</math>?
  
<math>\textbf{(A)}\ 69\qquad\textbf{(B)}\ 151\qquad\textbf{(C)}\ 257\qquad\textbf{(D)}\ 293\qquad\textbf{(E)}\ 313</math>
+
<math>\textbf{(A)}\ \frac{12}{13} \qquad \textbf{(B)}\ \frac{35}{37} \qquad\textbf{(C)}\ 1 \qquad\textbf{(D)}\ \frac{37}{35} \qquad\textbf{(E)}\ \frac{13}{12}</math>
  
 
[[2017 AMC 12A  Problems/Problem 19|Solution]]
 
[[2017 AMC 12A  Problems/Problem 19|Solution]]
Line 167: Line 169:
 
==Problem 20==
 
==Problem 20==
  
A binary operation <math>\diamondsuit </math> has the properties that <math>a\ \diamondsuit\ (b\ \diamondsuit\ c) = (a\ \diamondsuit\ b)\cdot c</math> and that <math>a\ \diamondsuit\ a = 1</math> for all nonzero real numbers <math>a, b</math> and <math>c.</math> (Here the dot  <math>\cdot</math> represents the usual multiplication operation.) The solution to the equation <math>2016\ \diamondsuit\ (6\ \diamondsuit\ x) = 100</math> can be written as <math>\frac{p}{q},</math> where <math>p</math> and <math>q</math> are relatively prime positive integers. What is <math>p + q?</math>  
+
How many ordered pairs <math>(a,b)</math> such that <math>a</math> is a positive real number and <math>b</math> is an integer between <math>2</math> and <math>200</math>, inclusive, satisfy the equation <math>(\log_b a)^{2017}=\log_b(a^{2017})?</math>
  
<math>\textbf{(A)}\ 109\qquad\textbf{(B)}\ 201\qquad\textbf{(C)}\ 301\qquad\textbf{(D)}\ 3049\qquad\textbf{(E)}\ 33,601</math>
+
<math>\textbf{(A)}\ 198\qquad\textbf{(B)}\ 199\qquad\textbf{(C)}\ 398\qquad\textbf{(D)}\ 399\qquad\textbf{(E)}\ 597</math>
  
 
[[2017 AMC 12A  Problems/Problem 20|Solution]]
 
[[2017 AMC 12A  Problems/Problem 20|Solution]]
Line 175: Line 177:
 
==Problem 21==
 
==Problem 21==
  
A quadrilateral is inscribed in a circle of radius <math>200\sqrt{2}.</math> Three of the sides of this quadrilateral have length <math>200.</math> What is the length of its fourth side?  
+
A set <math>S</math> is constructed as follows. To begin, <math>S = \{0,10\}</math>. Repeatedly, as long as possible, if <math>x</math> is an integer root of some polynomial <math>a_{n}x^n + a_{n-1}x^{n-1} + ... + a_{1}x + a_0</math> for some <math>n\geq{1}</math>, all of whose coefficients <math>a_i</math> are elements of <math>S</math>, then <math>x</math> is put into <math>S</math>. When no more elements can be added to <math>S</math>, how many elements does <math>S</math> have?
  
<math>\textbf{(A)}\ 200\qquad\textbf{(B)}\ 200\sqrt{2} \qquad\textbf{(C)}\ 200\sqrt{3} \qquad\textbf{(D)}\ 300\sqrt{2} \qquad\textbf{(E)}\ 500</math>
+
<math>\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 9 \qquad\textbf{(E)}\ 11</math>
  
 
[[2017 AMC 12A  Problems/Problem 21|Solution]]
 
[[2017 AMC 12A  Problems/Problem 21|Solution]]
Line 183: Line 185:
 
==Problem 22==
 
==Problem 22==
  
How many ordered triples <math>(x,y,z)</math> of positive integers satisfy <math>\text{lcm}(x,y) = 72, \text{lcm}(x,z) = 600</math> and <math>\text{lcm}(y,z)=900</math>?
+
A square is drawn in the Cartesian coordinate plane with vertices at <math>(2, 2)</math>, <math>(-2, 2)</math>, <math>(-2, -2)</math>, <math>(2, -2)</math>. A particle starts at <math>(0,0)</math>. Every second it moves with equal probability to one of the eight lattice points (points with integer coordinates) closest to its current position, independently of its previous moves. In other words, the probability is <math>1/8</math> that the particle will move from <math>(x, y)</math> to each of <math>(x, y + 1)</math>, <math>(x + 1, y + 1)</math>, <math>(x + 1, y)</math>, <math>(x + 1, y - 1)</math>, <math>(x, y - 1)</math>, <math>(x - 1, y - 1)</math>, <math>(x - 1, y)</math>, or <math>(x - 1, y + 1)</math>. The particle will eventually hit the square for the first time, either at one of the 4 corners of the square or at one of the 12 lattice points in the interior of one of the sides of the square. The probability that it will hit at a corner rather than at an interior point of a side is <math>m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. What is <math>m + n</math>?
  
<math>\textbf{(A)}\ 15\qquad\textbf{(B)}\ 16\qquad\textbf{(C)}\ 24\qquad\textbf{(D)}\ 27\qquad\textbf{(E)}\ 64</math>
+
<math>\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 15 \qquad\textbf{(E)}\ 39</math>
  
 
[[2017 AMC 12A  Problems/Problem 22|Solution]]
 
[[2017 AMC 12A  Problems/Problem 22|Solution]]
Line 191: Line 193:
 
==Problem 23==
 
==Problem 23==
  
Three numbers in the interval <math>\left[0,1\right]</math> are chosen independently and at random. What is the probability that the chosen numbers are the side lengths of a triangle with positive area?
+
For certain real numbers <math>a</math>, <math>b</math>, and <math>c</math>, the polynomial <cmath>g(x) = x^3 + ax^2 + x + 10</cmath>has three distinct roots, and each root of <math>g(x)</math> is also a root of the polynomial <cmath>f(x) = x^4 + x^3 + bx^2 + 100x + c.</cmath>What is <math>f(1)</math>?
  
<math>\textbf{(A)}\ \dfrac{1}{6}\qquad\textbf{(B)}\ \dfrac{1}{3}\qquad\textbf{(C)}\ \dfrac{1}{2}\qquad\textbf{(D)}\ \dfrac{2}{3}\qquad\textbf{(E)}\ \dfrac{5}{6}</math>
+
<math>\textbf{(A)}\ -9009 \qquad\textbf{(B)}\ -8008 \qquad\textbf{(C)}\ -7007 \qquad\textbf{(D)}\ -6006 \qquad\textbf{(E)}\ -5005</math>
  
 
[[2017 AMC 12A  Problems/Problem 23|Solution]]
 
[[2017 AMC 12A  Problems/Problem 23|Solution]]
  
 +
==Problem 24==
 +
 +
Quadrilateral <math>ABCD</math> is inscribed in circle <math>O</math> and has side lengths <math>AB=3, BC=2, CD=6</math>, and <math>DA=8</math>. Let <math>X</math> and <math>Y</math> be points on <math>\overline{BD}</math> such that <math>\frac{DX}{BD} = \frac{1}{4}</math> and <math>\frac{BY}{BD} = \frac{11}{36}</math>. Let <math>E</math> be the intersection of line <math>AX</math> and the line through <math>Y</math> parallel to <math>\overline{AD}</math>. Let <math>F</math> be the intersection of line <math>CX</math> and the line through <math>E</math> parallel to <math>\overline{AC}</math>. Let <math>G</math> be the point on circle <math>O</math> other than <math>C</math> that lies on line <math>CX</math>. What is <math>XF\cdot XG</math>?
 +
 +
<math>\textbf{(A) }17\qquad\textbf{(B) }\frac{59 - 5\sqrt{2}}{3}\qquad\textbf{(C) }\frac{91 - 12\sqrt{3}}{4}\qquad\textbf{(D) }\frac{67 - 10\sqrt{2}}{3}\qquad\textbf{(E) }18</math>
 +
 +
[[2017 AMC 12A  Problems/Problem 24|Solution]]
 +
 +
==Problem 25==
 +
 +
The vertices <math>V</math> of a centrally symmetric hexagon in the complex plane are given by <cmath>V=\left\{  \sqrt{2}i,-\sqrt{2}i, \frac{1}{\sqrt{8}}(1+i),\frac{1}{\sqrt{8}}(-1+i),\frac{1}{\sqrt{8}}(1-i),\frac{1}{\sqrt{8}}(-1-i) \right\}.</cmath> For each <math>j</math>, <math>1\leq j\leq 12</math>, an element <math>z_j</math> is chosen from <math>V</math> at random, independently of the other choices. Let <math>P={\prod}_{j=1}^{12}z_j</math> be the product of the <math>12</math> numbers selected. What is the probability that <math>P=-1</math>?
 +
 +
<math>\textbf{(A) } \dfrac{5\cdot11}{3^{10}} \qquad \textbf{(B) } \dfrac{5^2\cdot11}{2\cdot3^{10}} \qquad \textbf{(C) } \dfrac{5\cdot11}{3^{9}} \qquad \textbf{(D) } \dfrac{5\cdot7\cdot11}{2\cdot3^{10}} \qquad \textbf{(E) } \dfrac{2^2\cdot5\cdot11}{3^{10}}</math>
 +
 +
[[2017 AMC 12A  Problems/Problem 25|Solution]]
 +
 +
==See also==
 +
{{AMC12 box|year=2017|ab=A|before=[[2016 AMC 12B Problems]]|after=[[2017 AMC 12B Problems]]}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 15:58, 7 November 2022

2017 AMC 12A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Pablo buys popsicles for his friends. The store sells single popsicles for $1 each, 3-popsicle boxes for $2, and 5-popsicle boxes for $3. What is the greatest number of popsicles that Pablo can buy with $8?

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ 11\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 13\qquad\textbf{(E)}\ 15$

Solution

Problem 2

The sum of two nonzero real numbers is 4 times their product. What is the sum of the reciprocals of the two numbers?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ 12$

Solution

Problem 3

Ms. Carroll promised that anyone who got all the multiple choice questions right on the upcoming exam would receive an A on the exam. Which one of these statements necessarily follows logically?

$\textbf{(A)}\ \text{ If Lewis did not receive an A, then he got all of the multiple choice questions wrong.} \\ \qquad\textbf{(B)}\ \text{ If Lewis did not receive an A, then he got at least one of the multiple choice questions wrong.} \\ \qquad\textbf{(C)}\ \text{ If Lewis got at least one of the multiple choice questions wrong, then he did not receive an A.} \\ \qquad\textbf{(D)}\ \text{ If Lewis received an A, then he got all of the multiple choice questions right.} \\ \qquad\textbf{(E)}\ \text{ If Lewis received an A, then he got at least one of the multiple choice questions right.}$

Solution

Problem 4

Jerry and Silvia wanted to go from the southwest corner of a square field to the northeast corner. Jerry walked due east and then due north to reach the goal, but Silvia headed northeast and reached the goal walking in a straight line. Which of the following is closest to how much shorter Silvia's trip was, compared to Jerry's trip?

$\textbf{(A)}\ 30\%\qquad\textbf{(B)}\ 40\%\qquad\textbf{(C)}\ 50\%\qquad\textbf{(D)}\ 60\%\qquad\textbf{(E)}\ 70\%$

Solution

Problem 5

At a gathering of $30$ people, there are $20$ people who all know each other and $10$ people who know no one. People who know each other hug, and people who do not know each other shake hands. How many handshakes occur?

$\textbf{(A)}\ 240\qquad\textbf{(B)}\ 245\qquad\textbf{(C)}\ 290\qquad\textbf{(D)}\ 480\qquad\textbf{(E)}\ 490$

Solution

Problem 6

Joy has $30$ thin rods, one each of every integer length from $1 \text{ cm}$ through $30 \text{ cm}$. She places the rods with lengths $3 \text{ cm}$, $7 \text{ cm}$, and $15 \text{cm}$ on a table. She then wants to choose a fourth rod that she can put with these three to form a quadrilateral with positive area. How many of the remaining rods can she choose as the fourth rod?

$\textbf{(A)}\ 16 \qquad\textbf{(B)}\ 17 \qquad\textbf{(C)}\ 18 \qquad\textbf{(D)}\ 19  \qquad\textbf{(E)}\ 20$

Solution

Problem 7

Define a function on the positive integers recursively by $f(1) = 2$, $f(n) = f(n-1) + 1$ if $n$ is even, and $f(n) = f(n-2) + 2$ if $n$ is odd and greater than $1$. What is $f(2017)$?

$\textbf{(A)}\ 2017 \qquad\textbf{(B)}\ 2018 \qquad\textbf{(C)}\ 4034 \qquad\textbf{(D)}\ 4035 \qquad\textbf{(E)}\ 4036$

Solution

Problem 8

The region consisting of all points in three-dimensional space within $3$ units of line segment $\overline{AB}$ has volume $216 \pi$. What is the length $AB$?

$\textbf{(A)}\ 6 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 18 \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 24$

Solution

Problem 9

Let $S$ be the set of points $(x,y)$ in the coordinate plane such that two of the three quantities $3$, $x+2$, and $y-4$ are equal and the third of the three quantities is no greater than the common value. Which of the following is a correct description of $S$?

$\textbf{(A)}\ \text{a single point} \qquad\textbf{(B)}\ \text{two intersecting lines} \\ \qquad\textbf{(C)}\ \text{three lines whose pairwise intersections are three distinct points} \\ \qquad\textbf{(D)}\ \text{a triangle}\qquad\textbf{(E)}\ \text{three rays with a common point}$

Solution

Problem 10

Chloé chooses a real number uniformly at random from the interval $[ 0,2017 ]$. Independently, Laurent chooses a real number uniformly at random from the interval $[ 0 , 4034 ]$. What is the probability that Laurent's number is greater than Chloe's number?

$\textbf{(A)}\ \dfrac{1}{2} \qquad\textbf{(B)}\ \dfrac{2}{3} \qquad\textbf{(C)}\ \dfrac{3}{4} \qquad\textbf{(D)}\ \dfrac{5}{6} \qquad\textbf{(E)}\ \dfrac{7}{8}$

Solution

Problem 11

Claire adds the degree measures of the interior angles of a convex polygon and arrives at a sum of $2017$. She then discovers that she forgot to include one angle. What is the degree measure of the forgotten angle?

$\textbf{(A)}\ 37\qquad\textbf{(B)}\ 63\qquad\textbf{(C)}\ 117\qquad\textbf{(D)}\ 143\qquad\textbf{(E)}\ 163$

Solution

Problem 12

There are $10$ horses, named Horse 1, Horse 2, $\ldots$, Horse 10. They get their names from how many minutes it takes them to run one lap around a circular race track: Horse $k$ runs one lap in exactly $k$ minutes. At time 0 all the horses are together at the starting point on the track. The horses start running in the same direction, and they keep running around the circular track at their constant speeds. The least time $S > 0$, in minutes, at which all $10$ horses will again simultaneously be at the starting point is $S = 2520$. Let $T>0$ be the least time, in minutes, such that at least $5$ of the horses are again at the starting point. What is the sum of the digits of $T$?

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 6$

Solution

Problem 13

Driving at a constant speed, Sharon usually takes $180$ minutes to drive from her house to her mother's house. One day Sharon begins the drive at her usual speed, but after driving $\frac{1}{3}$ of the way, she hits a bad snowstorm and reduces her speed by $20$ miles per hour. This time the trip takes her a total of $276$ minutes. How many miles is the drive from Sharon's house to her mother's house?

$\textbf{(A)}\ 132 \qquad\textbf{(B)}\ 135 \qquad\textbf{(C)}\ 138 \qquad\textbf{(D)}\ 141 \qquad\textbf{(E)}\ 144$

Solution

Problem 14

Alice refuses to sit next to either Bob or Carla. Derek refuses to sit next to Eric. How many ways are there for the five of them to sit in a row of $5$ chairs under these conditions?

$\textbf{(A)}\ 12  \qquad \textbf{(B)}\ 16 \qquad\textbf{(C)}\ 28 \qquad\textbf{(D)}\ 32 \qquad\textbf{(E)}\ 40$

Solution

Problem 15

Let $f(x) = \sin{x} + 2\cos{x} + 3\tan{x}$, using radian measure for the variable $x$. In what interval does the smallest positive value of $x$ for which $f(x) = 0$ lie?

$\textbf{(A)}\ (0,1)  \qquad \textbf{(B)}\ (1, 2) \qquad\textbf{(C)}\ (2, 3) \qquad\textbf{(D)}\ (3, 4) \qquad\textbf{(E)}\ (4,5)$

Solution

Problem 16

In the figure below, semicircles with centers at $A$ and $B$ and with radii 2 and 1, respectively, are drawn in the interior of, and sharing bases with, a semicircle with diameter $JK$. The two smaller semicircles are externally tangent to each other and internally tangent to the largest semicircle. A circle centered at $P$ is drawn externally tangent to the two smaller semicircles and internally tangent to the largest semicircle. What is the radius of the circle centered at $P$?

[asy] size(5cm); draw(arc((0,0),3,0,180)); draw(arc((2,0),1,0,180)); draw(arc((-1,0),2,0,180)); draw((-3,0)--(3,0)); pair P = (-1,0)+(2+6/7)*dir(36.86989); draw(circle(P,6/7)); dot((-1,0)); dot((2,0)); dot(P); [/asy]

$\textbf{(A)}\ \frac{3}{4} \qquad \textbf{(B)}\ \frac{6}{7} \qquad\textbf{(C)}\ \frac{\sqrt{3}}{2} \qquad\textbf{(D)}\ \frac{5}{8}\sqrt{2} \qquad\textbf{(E)}\ \frac{11}{12}$

Solution

Problem 17

There are $24$ different complex numbers $z$ such that $z^{24}=1$. For how many of these is $z^6$ a real number?

$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 24$

Solution

Problem 18

Let $S(n)$ equal the sum of the digits of positive integer $n$. For example, $S(1507) = 13$. For a particular positive integer $n$, $S(n) = 1274$. Which of the following could be the value of $S(n+1)$?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 1239\qquad\textbf{(E)}\ 1265$

Solution

Problem 19

A square with side length $x$ is inscribed in a right triangle with sides of length $3$, $4$, and $5$ so that one vertex of the square coincides with the right-angle vertex of the triangle. A square with side length $y$ is inscribed in another right triangle with sides of length $3$, $4$, and $5$ so that one side of the square lies on the hypotenuse of the triangle. What is $\tfrac{x}{y}$?

$\textbf{(A)}\ \frac{12}{13} \qquad \textbf{(B)}\ \frac{35}{37} \qquad\textbf{(C)}\ 1 \qquad\textbf{(D)}\ \frac{37}{35} \qquad\textbf{(E)}\ \frac{13}{12}$

Solution

Problem 20

How many ordered pairs $(a,b)$ such that $a$ is a positive real number and $b$ is an integer between $2$ and $200$, inclusive, satisfy the equation $(\log_b a)^{2017}=\log_b(a^{2017})?$

$\textbf{(A)}\ 198\qquad\textbf{(B)}\ 199\qquad\textbf{(C)}\ 398\qquad\textbf{(D)}\ 399\qquad\textbf{(E)}\ 597$

Solution

Problem 21

A set $S$ is constructed as follows. To begin, $S = \{0,10\}$. Repeatedly, as long as possible, if $x$ is an integer root of some polynomial $a_{n}x^n + a_{n-1}x^{n-1} + ... + a_{1}x + a_0$ for some $n\geq{1}$, all of whose coefficients $a_i$ are elements of $S$, then $x$ is put into $S$. When no more elements can be added to $S$, how many elements does $S$ have?

$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 9 \qquad\textbf{(E)}\ 11$

Solution

Problem 22

A square is drawn in the Cartesian coordinate plane with vertices at $(2, 2)$, $(-2, 2)$, $(-2, -2)$, $(2, -2)$. A particle starts at $(0,0)$. Every second it moves with equal probability to one of the eight lattice points (points with integer coordinates) closest to its current position, independently of its previous moves. In other words, the probability is $1/8$ that the particle will move from $(x, y)$ to each of $(x, y + 1)$, $(x + 1, y + 1)$, $(x + 1, y)$, $(x + 1, y - 1)$, $(x, y - 1)$, $(x - 1, y - 1)$, $(x - 1, y)$, or $(x - 1, y + 1)$. The particle will eventually hit the square for the first time, either at one of the 4 corners of the square or at one of the 12 lattice points in the interior of one of the sides of the square. The probability that it will hit at a corner rather than at an interior point of a side is $m/n$, where $m$ and $n$ are relatively prime positive integers. What is $m + n$?

$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 15 \qquad\textbf{(E)}\ 39$

Solution

Problem 23

For certain real numbers $a$, $b$, and $c$, the polynomial \[g(x) = x^3 + ax^2 + x + 10\]has three distinct roots, and each root of $g(x)$ is also a root of the polynomial \[f(x) = x^4 + x^3 + bx^2 + 100x + c.\]What is $f(1)$?

$\textbf{(A)}\ -9009 \qquad\textbf{(B)}\ -8008 \qquad\textbf{(C)}\ -7007 \qquad\textbf{(D)}\ -6006 \qquad\textbf{(E)}\ -5005$

Solution

Problem 24

Quadrilateral $ABCD$ is inscribed in circle $O$ and has side lengths $AB=3, BC=2, CD=6$, and $DA=8$. Let $X$ and $Y$ be points on $\overline{BD}$ such that $\frac{DX}{BD} = \frac{1}{4}$ and $\frac{BY}{BD} = \frac{11}{36}$. Let $E$ be the intersection of line $AX$ and the line through $Y$ parallel to $\overline{AD}$. Let $F$ be the intersection of line $CX$ and the line through $E$ parallel to $\overline{AC}$. Let $G$ be the point on circle $O$ other than $C$ that lies on line $CX$. What is $XF\cdot XG$?

$\textbf{(A) }17\qquad\textbf{(B) }\frac{59 - 5\sqrt{2}}{3}\qquad\textbf{(C) }\frac{91 - 12\sqrt{3}}{4}\qquad\textbf{(D) }\frac{67 - 10\sqrt{2}}{3}\qquad\textbf{(E) }18$

Solution

Problem 25

The vertices $V$ of a centrally symmetric hexagon in the complex plane are given by \[V=\left\{   \sqrt{2}i,-\sqrt{2}i, \frac{1}{\sqrt{8}}(1+i),\frac{1}{\sqrt{8}}(-1+i),\frac{1}{\sqrt{8}}(1-i),\frac{1}{\sqrt{8}}(-1-i) \right\}.\] For each $j$, $1\leq j\leq 12$, an element $z_j$ is chosen from $V$ at random, independently of the other choices. Let $P={\prod}_{j=1}^{12}z_j$ be the product of the $12$ numbers selected. What is the probability that $P=-1$?

$\textbf{(A) } \dfrac{5\cdot11}{3^{10}} \qquad \textbf{(B) } \dfrac{5^2\cdot11}{2\cdot3^{10}} \qquad \textbf{(C) } \dfrac{5\cdot11}{3^{9}} \qquad \textbf{(D) } \dfrac{5\cdot7\cdot11}{2\cdot3^{10}} \qquad \textbf{(E) } \dfrac{2^2\cdot5\cdot11}{3^{10}}$

Solution

See also

2017 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
2016 AMC 12B Problems
Followed by
2017 AMC 12B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png