|
|
(89 intermediate revisions by 60 users not shown) |
Line 1: |
Line 1: |
− | '''Vieta's formulas''' are a set of [[equation]]s relating the [[root]]s and the [[coefficient]]s of [[polynomial]]s.
| + | #REDIRECT[[Vieta's formulas]] |
− | | |
− | == Introduction ==
| |
− | | |
− | Let <math>P(x)</math> be a polynomial of degree <math>n</math>, so <math>P(x)={a_n}x^n+{a_{n-1}}x^{n-1}+\cdots+{a_1}x+a_0</math>,
| |
− | where the coefficient of <math>\displaystyle x^{i}</math> is <math>\displaystyle {a}_i</math> and <math>a_n \neq 0</math>. As a consequence of the [[Fundamental Theorem of Algebra]], we can also write <math>P(x)=a_n(x-r_1)(x-r_2)\cdots(x-r_n)</math>, where <math>\displaystyle {r}_i</math> are the roots of <math>\displaystyle P(x)</math>. We thus have that
| |
− | | |
− | <math> a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 = a_n(x-r_1)(x-r_2)\cdots(x-r_n).</math>
| |
− | | |
− | Expanding out the right hand side gives us
| |
− | | |
− | <center><math> a_nx^n - a_n(r_1+r_2+\cdots+r_n)x^{n-1} + a_n(r_1r_2 + r_1r_3 + \cdots + r_{n-1}r_n)x^{n-2} + \cdots + (-1)^na_n r_1r_2\cdots r_n.</math></center>
| |
− | | |
− | The coefficient of <math>\displaystyle x^k </math> in this expression will be the <math> \displaystyle k </math>th [[symmetric sum]] of the <math>r_i</math>.
| |
− | | |
− | We now have two different expressions for <math>\displaystyle P(x)</math>. These must be equal. However, the only way for two polynomials to be equal for all values of <math>\displaystyle x</math> is for each of their corresponding coefficients to be equal. So, starting with the coefficient of <math>\displaystyle x^n </math>, we see that
| |
− | | |
− | <center><math>\displaystyle a_n = a_n</math></center>
| |
− | <center><math> a_{n-1} = -a_n(r_1+r_2+\cdots+r_n)</math></center>
| |
− | <center><math> a_{n-2} = a_n(r_1r_2+r_1r_3+\cdots+r_{n-1}r_n)</math></center>
| |
− | <center><math>\vdots</math></center>
| |
− | <center><math>a_0 = (-1)^n a_n r_1r_2\cdots r_n</math></center>
| |
− | | |
− | More commonly, these are written with the roots on one side and the <math>\displaystyle a_i</math> on the other (this can be arrived at by dividing both sides of all the equations by <math>\displaystyle a_n</math>).
| |
− | | |
− | If we denote <math>\displaystyle \sigma_k</math> as the <math>\displaystyle k</math>th symmetric sum, then we can write those formulas more compactly as <math>\displaystyle \sigma_k = (-1)^k\cdot \frac{a_{n-k}}{a_n{}}</math>, for <math>\displaystyle 1\le k\le {n}</math>.
| |
− | | |
− | == See also ==
| |
− | | |
− | * [[Algebra]]
| |
− | * [[Polynomials]]
| |
− | * [[Newton sums]]
| |
− | | |
− | == Related Links ==
| |
− | [http://mathworld.wolfram.com/VietasFormulas.html Mathworld's Article]
| |