Difference between revisions of "1977 AHSME Problems/Problem 1"

(Solution)
(Solution)
 
Line 1: Line 1:
 +
== Problem 1 ==
 +
 +
If <math>y = 2x</math> and <math>z = 2y</math>, then <math>x + y + z</math> equals
 +
 +
<math>\text{(A)}\ x \qquad
 +
\text{(B)}\ 3x \qquad
 +
\text{(C)}\ 5x \qquad
 +
\text{(D)}\ 7x \qquad
 +
\text{(E)}\ 9x</math>
 +
 
 +
 
==Solution==
 
==Solution==
 
Solution by e_power_pi_times_i
 
Solution by e_power_pi_times_i
  
 
<math>x+y+z = x+(2x)+(4x) = \boxed{\text{(D)}\ 7x}</math>
 
<math>x+y+z = x+(2x)+(4x) = \boxed{\text{(D)}\ 7x}</math>

Latest revision as of 11:24, 21 November 2016

Problem 1

If $y = 2x$ and $z = 2y$, then $x + y + z$ equals

$\text{(A)}\ x \qquad  \text{(B)}\ 3x \qquad  \text{(C)}\ 5x \qquad  \text{(D)}\ 7x \qquad  \text{(E)}\ 9x$


Solution

Solution by e_power_pi_times_i

$x+y+z = x+(2x)+(4x) = \boxed{\text{(D)}\ 7x}$