Difference between revisions of "Asymptote: Logical Operators and Loops"

(removed dead link)
 
Line 44: Line 44:
  
 
Above, we created a picture called <tt>smiley</tt> and added it to <tt>currentpicture</tt> many times using a <tt>for</tt> loop, as the indices <math>i</math> and <math>j</math> each ranged from <math>0</math> to <math>4</math>.  Basically, the arguments in the parentheses for the first <tt>for</tt> loop first declare <math>i</math> to be an integer and assign to i the value <math>0</math>.  Then, if <math>i<5</math>, it executes what is inside the <tt>{}</tt>  brackets and when it is finished, it adds <math>1</math> to <math>i</math> (<tt>++i</tt>).  This process repeats until the boolean statement <math>i<5</math> has the value false, i.e. 5 times (hence the 5 columns of smileys).  The <tt>if</tt> statement is self-explanatory; if <math>\lfloor(i-j)/2\rfloor=(i-j)/2</math> (which checks if <math>i</math> and <math>j</math> have the same parity or not), then the smiley is added, and if not it skips the brackets that follow.
 
Above, we created a picture called <tt>smiley</tt> and added it to <tt>currentpicture</tt> many times using a <tt>for</tt> loop, as the indices <math>i</math> and <math>j</math> each ranged from <math>0</math> to <math>4</math>.  Basically, the arguments in the parentheses for the first <tt>for</tt> loop first declare <math>i</math> to be an integer and assign to i the value <math>0</math>.  Then, if <math>i<5</math>, it executes what is inside the <tt>{}</tt>  brackets and when it is finished, it adds <math>1</math> to <math>i</math> (<tt>++i</tt>).  This process repeats until the boolean statement <math>i<5</math> has the value false, i.e. 5 times (hence the 5 columns of smileys).  The <tt>if</tt> statement is self-explanatory; if <math>\lfloor(i-j)/2\rfloor=(i-j)/2</math> (which checks if <math>i</math> and <math>j</math> have the same parity or not), then the smiley is added, and if not it skips the brackets that follow.
 
For more information on logical operators and loops, see [[http://www.cplusplus.com/doc/tutorial/control.html here]].
 

Latest revision as of 13:49, 23 July 2024

Asymptote (Vector Graphics Language)
Getting Started - Basics - Drawing - Labeling - Filling - Useful functions - Examples - Macros and Packages

Help - Reference - Advanced Asymptote - 3D Graphics - CSE5 Package - How to

Asymptote uses loops and logical operators that are almost identical to those in C++. Loops are absolutely essential if you want to make diagrams that look like this:

[asy] import graph; real r=5;  size(r*cm); picture smiley; filldraw(smiley,Circle((0,0),1),yellow,black); fill(smiley,Circle((-.3,.4),.1),black); fill(smiley,Circle((.3,.4),.1),black); draw(smiley,Arc((0,0),.5,-140,-40)); for (int i=0; i<5; ++i) {  for (int j=0; j<5; ++j)  {   if (floor((i-j)/2)==((i-j)/2))   {   add(scale(r/10*cm)*smiley,(i,j));   }  } } [/asy] This particular example was produced with the following code:

import graph;
real r=5; 
size(r*cm);
picture smiley;
filldraw(smiley,Circle((0,0),1),yellow,black);
fill(smiley,Circle((-.3,.4),.1),black);
fill(smiley,Circle((.3,.4),.1),black);
draw(smiley,Arc((0,0),.5,-140,-40));
for (int i=0; i<5; ++i)
{
 for (int j=0; j<5; ++j)
 {
  if (floor((i-j)/2)==((i-j)/2))
  {
  add(scale(r/10*cm)*smiley,(i,j));
  }
 }
}

Above, we created a picture called smiley and added it to currentpicture many times using a for loop, as the indices $i$ and $j$ each ranged from $0$ to $4$. Basically, the arguments in the parentheses for the first for loop first declare $i$ to be an integer and assign to i the value $0$. Then, if $i<5$, it executes what is inside the {} brackets and when it is finished, it adds $1$ to $i$ (++i). This process repeats until the boolean statement $i<5$ has the value false, i.e. 5 times (hence the 5 columns of smileys). The if statement is self-explanatory; if $\lfloor(i-j)/2\rfloor=(i-j)/2$ (which checks if $i$ and $j$ have the same parity or not), then the smiley is added, and if not it skips the brackets that follow.