Difference between revisions of "2004 AMC 10A Problems/Problem 21"

(Problem)
(Solution 2)
 
(10 intermediate revisions by 6 users not shown)
Line 2: Line 2:
 
Two distinct lines pass through the center of three concentric circles of radii 3, 2, and 1. The area of the shaded region in the diagram is <math>\frac{8}{13}</math> of the area of the unshaded region. What is the radian measure of the acute angle formed by the two lines? (Note: <math>\pi</math> radians is <math>180</math> degrees.)
 
Two distinct lines pass through the center of three concentric circles of radii 3, 2, and 1. The area of the shaded region in the diagram is <math>\frac{8}{13}</math> of the area of the unshaded region. What is the radian measure of the acute angle formed by the two lines? (Note: <math>\pi</math> radians is <math>180</math> degrees.)
  
<center><math>[img]http://www168.lunapic.com/do-not-link-here-use-hosting-instead/146950963617738?5661647711[/img]</math></center>
+
<center><asy>
 +
size(85);
 +
fill((-30,0)..(-24,18)--(0,0)--(-24,-18)..cycle,gray(0.7));
 +
fill((30,0)..(24,18)--(0,0)--(24,-18)..cycle,gray(0.7));
 +
fill((-20,0)..(0,20)--(0,-20)..cycle,white);
 +
fill((20,0)..(0,20)--(0,-20)..cycle,white);
 +
fill((0,20)..(-16,12)--(0,0)--(16,12)..cycle,gray(0.7));
 +
fill((0,-20)..(-16,-12)--(0,0)--(16,-12)..cycle,gray(0.7));
 +
fill((0,10)..(-10,0)--(10,0)..cycle,white);
 +
fill((0,-10)..(-10,0)--(10,0)..cycle,white);
 +
fill((-10,0)..(-8,6)--(0,0)--(-8,-6)..cycle,gray(0.7));
 +
fill((10,0)..(8,6)--(0,0)--(8,-6)..cycle,gray(0.7));
 +
draw(Circle((0,0),10),linewidth(0.7));
 +
draw(Circle((0,0),20),linewidth(0.7));
 +
draw(Circle((0,0),30),linewidth(0.7));
 +
draw((-28,-21)--(28,21),linewidth(0.7));
 +
draw((-28,21)--(28,-21),linewidth(0.7));</asy></center>
  
 
<math> \mathrm{(A) \ } \frac{\pi}{8} \qquad \mathrm{(B) \ } \frac{\pi}{7} \qquad \mathrm{(C) \ } \frac{\pi}{6} \qquad \mathrm{(D) \ } \frac{\pi}{5} \qquad \mathrm{(E) \ } \frac{\pi}{4} </math>
 
<math> \mathrm{(A) \ } \frac{\pi}{8} \qquad \mathrm{(B) \ } \frac{\pi}{7} \qquad \mathrm{(C) \ } \frac{\pi}{6} \qquad \mathrm{(D) \ } \frac{\pi}{5} \qquad \mathrm{(E) \ } \frac{\pi}{4} </math>
  
==Solution==
+
==Solution 1==
 
Let the area of the shaded region be <math>S</math>, the area of the unshaded region be <math>U</math>, and the acute angle that is formed by the two lines be <math>\theta</math>. We can set up two equations between <math>S</math> and <math>U</math>:
 
Let the area of the shaded region be <math>S</math>, the area of the unshaded region be <math>U</math>, and the acute angle that is formed by the two lines be <math>\theta</math>. We can set up two equations between <math>S</math> and <math>U</math>:
  
Line 20: Line 36:
  
 
Thus <math>3\theta=\dfrac{3\pi}{7}\Rightarrow \theta=\dfrac{\pi}{7}\Rightarrow\boxed{\mathrm{(B)}\ \frac{\pi}{7}}</math>
 
Thus <math>3\theta=\dfrac{3\pi}{7}\Rightarrow \theta=\dfrac{\pi}{7}\Rightarrow\boxed{\mathrm{(B)}\ \frac{\pi}{7}}</math>
 +
 +
==Solution 2==
 +
 +
As mentioned in Solution #1, we can make an equation for the area of the shaded region in terms of <math>\theta</math>.
 +
 +
<math>\implies\dfrac{2\theta}{2\pi} \cdot \pi +\dfrac{2(\pi-\theta)}{2\pi} \cdot (4\pi-\pi)+\dfrac{2\theta}{2\pi}(9\pi-4\pi)=\theta +3\pi-3\theta+5\theta=3\theta+3\pi</math>.
 +
 +
So, the shaded region is <math>3\theta+3\pi</math>. This means that the unshaded region is <math>9\pi-(3\theta+3\pi)</math>.
 +
 +
Also, the shaded region is <math>\frac{8}{13}</math> of the unshaded region. Hence, we can now make an equation and solve for <math>\theta</math>.
 +
 +
 +
<math>3\theta+3\pi=\frac{8}{13}(9\pi-(3\theta+3\pi)\implies 39\theta+39\pi=8(6\pi-3\theta)\implies 39\theta+39\pi=48\pi-24\theta</math>.
 +
 +
Simplifying, we get <math>63\theta=9\pi\implies \theta=\boxed{\mathrm{(B)}\ \frac{\pi}{7}}</math>
 +
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/t3EWtMnJu2Y?t=49
 +
 +
~ pi_is_3.14
  
 
== See also ==
 
== See also ==

Latest revision as of 02:50, 23 January 2023

Problem

Two distinct lines pass through the center of three concentric circles of radii 3, 2, and 1. The area of the shaded region in the diagram is $\frac{8}{13}$ of the area of the unshaded region. What is the radian measure of the acute angle formed by the two lines? (Note: $\pi$ radians is $180$ degrees.)

[asy] size(85); fill((-30,0)..(-24,18)--(0,0)--(-24,-18)..cycle,gray(0.7)); fill((30,0)..(24,18)--(0,0)--(24,-18)..cycle,gray(0.7)); fill((-20,0)..(0,20)--(0,-20)..cycle,white); fill((20,0)..(0,20)--(0,-20)..cycle,white); fill((0,20)..(-16,12)--(0,0)--(16,12)..cycle,gray(0.7)); fill((0,-20)..(-16,-12)--(0,0)--(16,-12)..cycle,gray(0.7)); fill((0,10)..(-10,0)--(10,0)..cycle,white); fill((0,-10)..(-10,0)--(10,0)..cycle,white); fill((-10,0)..(-8,6)--(0,0)--(-8,-6)..cycle,gray(0.7)); fill((10,0)..(8,6)--(0,0)--(8,-6)..cycle,gray(0.7)); draw(Circle((0,0),10),linewidth(0.7)); draw(Circle((0,0),20),linewidth(0.7)); draw(Circle((0,0),30),linewidth(0.7)); draw((-28,-21)--(28,21),linewidth(0.7)); draw((-28,21)--(28,-21),linewidth(0.7));[/asy]

$\mathrm{(A) \ } \frac{\pi}{8} \qquad \mathrm{(B) \ } \frac{\pi}{7} \qquad \mathrm{(C) \ } \frac{\pi}{6} \qquad \mathrm{(D) \ } \frac{\pi}{5} \qquad \mathrm{(E) \ } \frac{\pi}{4}$

Solution 1

Let the area of the shaded region be $S$, the area of the unshaded region be $U$, and the acute angle that is formed by the two lines be $\theta$. We can set up two equations between $S$ and $U$:

$S+U=9\pi$

$S=\dfrac{8}{13}U$

Thus $\dfrac{21}{13}U=9\pi$, and $U=\dfrac{39\pi}{7}$, and thus $S=\dfrac{8}{13}\cdot \dfrac{39\pi}{7}=\dfrac{24\pi}{7}$.

Now we can make a formula for the area of the shaded region in terms of $\theta$:

$\dfrac{2\theta}{2\pi} \cdot \pi +\dfrac{2(\pi-\theta)}{2\pi} \cdot (4\pi-\pi)+\dfrac{2\theta}{2\pi}(9\pi-4\pi)=\theta +3\pi-3\theta+5\theta=3\theta+3\pi=\dfrac{24\pi}{7}$

Thus $3\theta=\dfrac{3\pi}{7}\Rightarrow \theta=\dfrac{\pi}{7}\Rightarrow\boxed{\mathrm{(B)}\ \frac{\pi}{7}}$

Solution 2

As mentioned in Solution #1, we can make an equation for the area of the shaded region in terms of $\theta$.

$\implies\dfrac{2\theta}{2\pi} \cdot \pi +\dfrac{2(\pi-\theta)}{2\pi} \cdot (4\pi-\pi)+\dfrac{2\theta}{2\pi}(9\pi-4\pi)=\theta +3\pi-3\theta+5\theta=3\theta+3\pi$.

So, the shaded region is $3\theta+3\pi$. This means that the unshaded region is $9\pi-(3\theta+3\pi)$.

Also, the shaded region is $\frac{8}{13}$ of the unshaded region. Hence, we can now make an equation and solve for $\theta$.


$3\theta+3\pi=\frac{8}{13}(9\pi-(3\theta+3\pi)\implies 39\theta+39\pi=8(6\pi-3\theta)\implies 39\theta+39\pi=48\pi-24\theta$.

Simplifying, we get $63\theta=9\pi\implies \theta=\boxed{\mathrm{(B)}\ \frac{\pi}{7}}$

Video Solution by OmegaLearn

https://youtu.be/t3EWtMnJu2Y?t=49

~ pi_is_3.14

See also

2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png