Difference between revisions of "2016 USAJMO Problems/Problem 1"

(Created page with "== Problem == The isosceles triangle <math>\triangle ABC</math>, with <math>AB=AC</math>, is inscribed in the circle <math>\omega</math>. Let <math>P</math> be a variable poi...")
 
(Solution 3)
 
(19 intermediate revisions by 11 users not shown)
Line 5: Line 5:
 
Prove that as <math>P</math> varies, the circumcircle of triangle <math>\triangle PI_BI_C</math> passes through a fixed point.
 
Prove that as <math>P</math> varies, the circumcircle of triangle <math>\triangle PI_BI_C</math> passes through a fixed point.
  
== Solution ==
+
==Solution 1==
  
We will use complex numbers, with the circumcircle of <math>\triangle ABC</math> as the unit circle. Let <cmath>A=1, B=w^2,C=\frac{1}{w^2}, P=p^2,</cmath> such that <cmath>I_B=w+wp-p, I_C=p-\frac{p}{w}+\frac{1}{w}.</cmath> We claim that the circumcircle of <math>\triangle PI_BI_C</math> passes through <math>M=-1.</math> This is true iff <cmath>k=\frac{(I_B-M)(I_C-P)}{(I_B-P)(I_C-M)}=\frac{(w+wp-p+1)(p+\frac{1}{w}-\frac{p}{w}-p^2)}{(w+wp-p-p^2)(p+\frac{1}{w}-\frac{p}{w}+1)}=\frac{(wp+1)(1-p)}{(p+1)(w-p)}</cmath> is real. This is true iff <math>k=\overline{k}.</math> We can compute <cmath>\overline{k}=\frac{(1+\frac{1}{wp})(1-\frac{1}{p})}{(\frac{1}{p}+1)(\frac{1}{w}-\frac{1}{p})}=k,</cmath> so we are done. <math>\blacksquare</math>
+
<asy>
 +
size(8cm);
 +
pair A = dir(90);
 +
pair B = dir(-10);
 +
pair C = dir(190);
 +
pair P = dir(-70);
 +
pair U = incenter(A,B,P);
 +
pair V = incenter(A,C,P);
 +
pair M = dir(-90);
 +
 
 +
draw(circle((0,0),1));
 +
dot("$A$", A, dir(A));
 +
dot("$B$", B, dir(B));
 +
dot("$C$", C, dir(C));
 +
dot("$P$", P, dir(P));
 +
dot("$I_B$", U, NE);
 +
dot("$I_C$", V, NW);
 +
dot("$M$", M, dir(M));
 +
draw(A--B--C--A);
 +
draw(circumcircle(P,U,V));
 +
 
 +
 
 +
</asy>
 +
 
 +
We claim that <math>M</math> (midpoint of arc <math>BC</math>) is the fixed point.
 +
We would like to show that <math>M</math>, <math>P</math>, <math>I_B</math>, <math>I_C</math> are cyclic.
 +
 
 +
We extend <math>PI_B</math> to intersect <math>\omega</math> again at R.
 +
We extend <math>PI_C</math> to intersect <math>\omega</math> again at S.
 +
 
 +
We invert around a circle centered at <math>P</math> with radius <math>1</math> (for convenience).
 +
(I will denote X' as the reflection of X for all the points)
 +
The problem then becomes: Prove <math>I_B'</math>, <math>I_C'</math>, and <math>M'</math> are collinear.
 +
 
 +
Now we look at triangle <math>\triangle PR'S'</math>. We apply Menelaus (the version where all three points lie outside the triangle).
 +
It suffices to show that
 +
<cmath>\dfrac{PI_B'}{I_B'R'} \cdot \dfrac{R'M'}{M'S'} \cdot \dfrac{S'I_C'}{I_C'P} = 1</cmath>
 +
 
 +
By inversion, we know <math>PX' = \dfrac{1}{PX}</math> for any point <math>X</math> and <math>X'Y' = \dfrac{XY}{PX \cdot PY}</math> for any points <math>X</math> and <math>Y</math>.
 +
 
 +
Plugging this into our Menelaus equation we obtain that it suffices to show
 +
<cmath>\dfrac{\dfrac{1}{PI_B}}{\dfrac{RI_B}{PI_B \cdot PR}} \cdot \dfrac{\dfrac{RM}{PR \cdot PM}}{\dfrac{SM}{PS \cdot PM}} \cdot \dfrac{\dfrac{SI_C}{PI_C \cdot PS}}{\dfrac{1}{PI_C}} = 1</cmath>
 +
We cancel out the like terms and rewrite. It suffices to show
 +
<cmath>\dfrac{RM \cdot SI_C}{SM \cdot RI_B} = 1</cmath>
 +
We know that <math>AM</math> is the diameter of <math>\omega</math> because <math>\triangle ABC</math> is isosceles and <math>AM</math> is the angle bisector. We also know <math>\angle RMA = \dfrac{\angle ACB}{2} = \dfrac{\angle ABC}{2} = \angle SMA</math> so <math>R</math> and <math>S</math> are symmetric with respect to <math>AM</math> so <math>RM = SM</math>.
 +
 
 +
Thus, it suffices to show <math>\dfrac{SI_C}{RI_B} = 1</math>.
 +
This is obvious because <math>RI_B = RA = SA = SI_C</math>.
 +
Therefore we are done. <math>\blacksquare</math>
 +
 
 +
== Solution 2==
 +
 
 +
We will use complex numbers as mentioned [http://web.mit.edu/yufeiz/www/wc08/peng_formula.pdf here]. Set the circumcircle of <math>\triangle ABC</math> to be the unit circle. Let <cmath>A=1, B=w^2,C=\frac{1}{w^2}, P=p^2,</cmath> such that <cmath>I_B=w+wp-p, I_C=p-\frac{p}{w}+\frac{1}{w}.</cmath> We claim that the circumcircle of <math>\triangle PI_BI_C</math> passes through <math>M=-1.</math> This is true if <cmath>k=\frac{(I_B-M)(I_C-P)}{(I_B-P)(I_C-M)}=\frac{(w+wp-p+1)(p+\frac{1}{w}-\frac{p}{w}-p^2)}{(w+wp-p-p^2)(p+\frac{1}{w}-\frac{p}{w}+1)}=\frac{(wp+1)(1-p)}{(p+1)(w-p)}</cmath> is real. Now observe that <cmath>\overline{k}=\frac{(1+\frac{1}{wp})(1-\frac{1}{p})}{(\frac{1}{p}+1)(\frac{1}{w}-\frac{1}{p})}=k,</cmath> so <math>k</math> is real and we are done. <math>\blacksquare</math>
 +
 
 +
 
 +
==Solution 3==
 +
 
 +
<asy>
 +
size(8cm);
 +
pair A = dir(90);
 +
pair B = dir(-10);
 +
pair C = dir(190);
 +
pair P = dir(-70);
 +
pair U = incenter(A,B,P);
 +
pair V = incenter(A,C,P);
 +
pair M = dir(-90);
 +
pair D = dir(40);
 +
pair E = dir(140);
 +
 
 +
 
 +
draw(circle((0,0),1));
 +
dot("$A$", A, dir(A));
 +
dot("$B$", B, dir(B));
 +
dot("$C$", C, dir(C));
 +
dot("$D$", D, dir(D));
 +
dot("$E$", E, dir(E));
 +
dot("$P$", P, dir(P));
 +
dot("$I_B$", U, NE);
 +
dot("$I_C$", V, NW);
 +
dot("$M$", M, dir(M));
 +
draw(A--B--C--A--P--B ^^ P--C ^^ E--D--P--E--M--V ^^ D--M--U--V);
 +
</asy>
 +
 
 +
Let <math>M</math> be the midpoint of arc <math>BC</math>. Let <math>D</math> be the midpoint of arc <math>AB</math>. Let <math>E</math> be the midpoint of arc <math>AC</math>.
 +
Then, <math>P, I_B</math>, and <math>D</math> are collinear and <math>P, I_C</math>, and <math>E</math> are collinear.
 +
 
 +
We'll prove <math>MPI_B I_C</math> is cyclic. (Intuition: we'll show that <math>M</math> is the Miquel's point of quadrilateral <math>DE I_C I_B</math>.
 +
 
 +
<math>D</math> is the center of the circle <math>A I_B B</math> (the <math>P-</math> excenter of <math>PAB</math> is also on the same circle). Therefore <math>D I_B = DB</math>. Similarly <math>E I_C = EC</math>. Since <math>AB=AC</math>, <math>DB=EC</math>. Therefore <math>D I_B = E I_C</math>. Obviously <math>ME = MD</math> and <math>\angle MEI_C = \angle MEP = \angle MDP = \angle MDI_B</math>. Thus by SAS, <math>\triangle MEI_C \cong \triangle MDI_B</math>.
 +
 
 +
Hence <math>\angle I_B M I_C = \angle DME = \angle DPE = \angle I_B P I_C</math>, so <math>MPI_B I_C</math> is cyclic and we are done.
 +
 
 +
{{MAA Notice}}
 +
 
 +
==See also==
 +
{{USAJMO newbox|year=2016|beforetext=|before=First Problem|num-a=2}}

Latest revision as of 14:15, 28 June 2020

Problem

The isosceles triangle $\triangle ABC$, with $AB=AC$, is inscribed in the circle $\omega$. Let $P$ be a variable point on the arc $\stackrel{\frown}{BC}$ that does not contain $A$, and let $I_B$ and $I_C$ denote the incenters of triangles $\triangle ABP$ and $\triangle ACP$, respectively.

Prove that as $P$ varies, the circumcircle of triangle $\triangle PI_BI_C$ passes through a fixed point.

Solution 1

[asy] size(8cm); pair A = dir(90); pair B = dir(-10); pair C = dir(190); pair P = dir(-70); pair U = incenter(A,B,P); pair V = incenter(A,C,P); pair M = dir(-90);  draw(circle((0,0),1)); dot("$A$", A, dir(A)); dot("$B$", B, dir(B)); dot("$C$", C, dir(C)); dot("$P$", P, dir(P)); dot("$I_B$", U, NE); dot("$I_C$", V, NW); dot("$M$", M, dir(M)); draw(A--B--C--A); draw(circumcircle(P,U,V));   [/asy]

We claim that $M$ (midpoint of arc $BC$) is the fixed point. We would like to show that $M$, $P$, $I_B$, $I_C$ are cyclic.

We extend $PI_B$ to intersect $\omega$ again at R. We extend $PI_C$ to intersect $\omega$ again at S.

We invert around a circle centered at $P$ with radius $1$ (for convenience). (I will denote X' as the reflection of X for all the points) The problem then becomes: Prove $I_B'$, $I_C'$, and $M'$ are collinear.

Now we look at triangle $\triangle PR'S'$. We apply Menelaus (the version where all three points lie outside the triangle). It suffices to show that \[\dfrac{PI_B'}{I_B'R'} \cdot \dfrac{R'M'}{M'S'} \cdot \dfrac{S'I_C'}{I_C'P} = 1\]

By inversion, we know $PX' = \dfrac{1}{PX}$ for any point $X$ and $X'Y' = \dfrac{XY}{PX \cdot PY}$ for any points $X$ and $Y$.

Plugging this into our Menelaus equation we obtain that it suffices to show \[\dfrac{\dfrac{1}{PI_B}}{\dfrac{RI_B}{PI_B \cdot PR}} \cdot \dfrac{\dfrac{RM}{PR \cdot PM}}{\dfrac{SM}{PS \cdot PM}} \cdot \dfrac{\dfrac{SI_C}{PI_C \cdot PS}}{\dfrac{1}{PI_C}} = 1\] We cancel out the like terms and rewrite. It suffices to show \[\dfrac{RM \cdot SI_C}{SM \cdot RI_B} = 1\] We know that $AM$ is the diameter of $\omega$ because $\triangle ABC$ is isosceles and $AM$ is the angle bisector. We also know $\angle RMA = \dfrac{\angle ACB}{2} = \dfrac{\angle ABC}{2} = \angle SMA$ so $R$ and $S$ are symmetric with respect to $AM$ so $RM = SM$.

Thus, it suffices to show $\dfrac{SI_C}{RI_B} = 1$. This is obvious because $RI_B = RA = SA = SI_C$. Therefore we are done. $\blacksquare$

Solution 2

We will use complex numbers as mentioned here. Set the circumcircle of $\triangle ABC$ to be the unit circle. Let \[A=1, B=w^2,C=\frac{1}{w^2}, P=p^2,\] such that \[I_B=w+wp-p, I_C=p-\frac{p}{w}+\frac{1}{w}.\] We claim that the circumcircle of $\triangle PI_BI_C$ passes through $M=-1.$ This is true if \[k=\frac{(I_B-M)(I_C-P)}{(I_B-P)(I_C-M)}=\frac{(w+wp-p+1)(p+\frac{1}{w}-\frac{p}{w}-p^2)}{(w+wp-p-p^2)(p+\frac{1}{w}-\frac{p}{w}+1)}=\frac{(wp+1)(1-p)}{(p+1)(w-p)}\] is real. Now observe that \[\overline{k}=\frac{(1+\frac{1}{wp})(1-\frac{1}{p})}{(\frac{1}{p}+1)(\frac{1}{w}-\frac{1}{p})}=k,\] so $k$ is real and we are done. $\blacksquare$


Solution 3

[asy] size(8cm); pair A = dir(90); pair B = dir(-10); pair C = dir(190); pair P = dir(-70); pair U = incenter(A,B,P); pair V = incenter(A,C,P); pair M = dir(-90); pair D = dir(40); pair E = dir(140);   draw(circle((0,0),1)); dot("$A$", A, dir(A)); dot("$B$", B, dir(B)); dot("$C$", C, dir(C)); dot("$D$", D, dir(D)); dot("$E$", E, dir(E)); dot("$P$", P, dir(P)); dot("$I_B$", U, NE); dot("$I_C$", V, NW); dot("$M$", M, dir(M)); draw(A--B--C--A--P--B ^^ P--C ^^ E--D--P--E--M--V ^^ D--M--U--V); [/asy]

Let $M$ be the midpoint of arc $BC$. Let $D$ be the midpoint of arc $AB$. Let $E$ be the midpoint of arc $AC$. Then, $P, I_B$, and $D$ are collinear and $P, I_C$, and $E$ are collinear.

We'll prove $MPI_B I_C$ is cyclic. (Intuition: we'll show that $M$ is the Miquel's point of quadrilateral $DE I_C I_B$.

$D$ is the center of the circle $A I_B B$ (the $P-$ excenter of $PAB$ is also on the same circle). Therefore $D I_B = DB$. Similarly $E I_C = EC$. Since $AB=AC$, $DB=EC$. Therefore $D I_B = E I_C$. Obviously $ME = MD$ and $\angle MEI_C = \angle MEP = \angle MDP = \angle MDI_B$. Thus by SAS, $\triangle MEI_C \cong \triangle MDI_B$.

Hence $\angle I_B M I_C = \angle DME = \angle DPE = \angle I_B P I_C$, so $MPI_B I_C$ is cyclic and we are done.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

See also

2016 USAJMO (ProblemsResources)
First Problem Followed by
Problem 2
1 2 3 4 5 6
All USAJMO Problems and Solutions