Difference between revisions of "1978 AHSME Problems/Problem 21"

(Created page with "== Problem 21 == For all positive numbers <math>x</math> distinct from <math>1</math>, <cmath>\frac{1}{\log_3(x)}+\frac{1}{\log_4(x)}+\frac{1}{\log_5(x)}</cmath> equals <m...")
 
(Solution)
 
(2 intermediate revisions by the same user not shown)
Line 14: Line 14:
  
 
== Solution ==
 
== Solution ==
<cmath>\frac{1}{\log_3(x)}+\frac{1}{\log_4(x)}+\frac{1}{\log_5(x)}\implies \frac{1}{\frac{\log(x)}{\log(3)}}+\frac{1}{\frac{\log(x)}{\log(4)}}+\frac{1}{\frac{\log(x)}{\log(5)}}\implies \frac{\log(3)+\log(4)+\log(5)}{\log(x)}=\frac{\log(60)}{\log(x)}\implies \log_x(60)</cmath>
+
<cmath>\frac{1}{\log_3(x)}+\frac{1}{\log_4(x)}+\frac{1}{\log_5(x)}\implies \frac{1}{\frac{\log(x)}{\log(3)}}+\frac{1}{\frac{\log(x)}{\log(4)}}+\frac{1}{\frac{\log(x)}{\log(5)}}\implies \frac{\log(3)+\log(4)+\log(5)}{\log(x)}=\frac{\log(60)}{\log(x)}\implies \log_x(60)\implies \frac{1}{\log_{60}(x)}</cmath>
Thus, the answer is <math>(\textbf{B})</math>
+
Thus, the answer is <math>(\textbf{A})</math>

Latest revision as of 09:32, 19 May 2016

Problem 21

For all positive numbers $x$ distinct from $1$,

\[\frac{1}{\log_3(x)}+\frac{1}{\log_4(x)}+\frac{1}{\log_5(x)}\]

equals

$\text{(A) }\frac{1}{\log_{60}(x)}\qquad\\ \text{(B) }\frac{1}{\log_{x}(60)}\qquad\\ \text{(C) }\frac{1}{(\log_{3}(x))(\log_{4}(x))(\log_{5}(x))}\qquad\\ \text{(D) }\frac{12}{\log_{3}(x)+\log_{4}(x)+\log_{5}(x)}\qquad\\ \text{(E) }\frac{\log_{2}(x)}{\log_{3}(x)\log_{5}(x)}+\frac{\log_{3}(x)}{\log_{2}(x)\log_{5}(x)}+\frac{\log_{5}(x)}{\log_{2}(x)\log_{3}(x)}$

Solution

\[\frac{1}{\log_3(x)}+\frac{1}{\log_4(x)}+\frac{1}{\log_5(x)}\implies \frac{1}{\frac{\log(x)}{\log(3)}}+\frac{1}{\frac{\log(x)}{\log(4)}}+\frac{1}{\frac{\log(x)}{\log(5)}}\implies \frac{\log(3)+\log(4)+\log(5)}{\log(x)}=\frac{\log(60)}{\log(x)}\implies \log_x(60)\implies \frac{1}{\log_{60}(x)}\] Thus, the answer is $(\textbf{A})$