|
|
(9 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2006 AIME I Problems/Problem 1]] |
− | | |
− | In convex hexagon <math>ABCDEF</math>, all six sides are congruent, <math>\angle A</math> and <math>\angle D</math> are right angles, and <math>\angle B, \angle C, \angle D, \angle E,</math> and <math>\angle F</math> are congruent. The area of the hexagonal region is <math>2116(\sqrt{2}+1).</math> Find <math>AB</math>.
| |
− | | |
− | == Solution ==
| |
− | | |
− | Let the side length be called <math>x</math>.
| |
− | [[Image:Diagram1.png]]
| |
− | | |
− | Then <math>AB=BC=CD=DE=EF=AF=x</math>.
| |
− | | |
− | The diagonal <math>BF=\sqrt{AB^2+AF^2}=\sqrt{x^2+x^2}=x\sqrt{2}</math>.
| |
− | | |
− | Then the areas of the triangles AFB and CDE in total are <math>\frac{x^2}{2}\cdot 2</math>,
| |
− | and the area of the rectangle BCEF equals <math>x\cdot x\sqrt{2}=x^2\sqrt{2}</math>
| |
− | | |
− | Then we have to solve the equation
| |
− | | |
− | <math>2116(\sqrt{2}+1)=x^2\sqrt{2}+x^2</math>.
| |
− | | |
− | <math>2116(\sqrt{2}+1)=x^2(\sqrt{2}+1)</math>
| |
− | | |
− | <math>2116=x^2</math>
| |
− | | |
− | <math>x=46</math>
| |
− | | |
− | The answer is therefore 046.
| |
− | | |
− | == See also ==
| |
− | *[[2006 AIME II Problems]]
| |