Difference between revisions of "2016 AMC 10B Problems/Problem 2"

(Problem)
(Video Solution)
 
(7 intermediate revisions by 7 users not shown)
Line 5: Line 5:
 
<math>\textbf{(A)}\ \frac{1}{4}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ 4</math>
 
<math>\textbf{(A)}\ \frac{1}{4}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ 4</math>
  
 +
==Solution 1==
 +
<math>\frac{2^3(2^2)^2}{(2^2)^32^2}=\frac{2^7}{2^8}=\frac12</math> which is <math>\textbf{(B)}</math>.
  
 +
==Solution 2==
 +
We can replace <math>2</math> and <math>4</math> with <math>a</math> and <math>b</math> respectively. Then substituting with <math>n</math> and <math>m</math> we can get <math>\dfrac{a^3b^2}{b^3a^2}=\dfrac{a}{b}</math> and substitute to get <math>\dfrac{2}{4}=\boxed{\dfrac{1}{2}}</math> which is <math>\boxed{\textbf{(B)}}</math>
  
==Solution==
+
==Video Solution (CREATIVE THINKING)==
<math>\textbf{(B)}\ \frac{1}{2}</math>
+
https://youtu.be/boCvD0Hb6h0
 +
 
 +
~Education, the Study of Everything
 +
 
 +
 
 +
 
 +
==Video Solution==
 +
https://youtu.be/W7IwD6sZWco
 +
 
 +
~savannahsolver
 +
 
 +
==See Also==
 +
{{AMC10 box|year=2016|ab=B|num-b=1|num-a=3}}
 +
{{MAA Notice}}

Latest revision as of 11:48, 2 July 2023

Problem

If $n\heartsuit m=n^3m^2$, what is $\frac{2\heartsuit 4}{4\heartsuit 2}$?

$\textbf{(A)}\ \frac{1}{4}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ 4$

Solution 1

$\frac{2^3(2^2)^2}{(2^2)^32^2}=\frac{2^7}{2^8}=\frac12$ which is $\textbf{(B)}$.

Solution 2

We can replace $2$ and $4$ with $a$ and $b$ respectively. Then substituting with $n$ and $m$ we can get $\dfrac{a^3b^2}{b^3a^2}=\dfrac{a}{b}$ and substitute to get $\dfrac{2}{4}=\boxed{\dfrac{1}{2}}$ which is $\boxed{\textbf{(B)}}$

Video Solution (CREATIVE THINKING)

https://youtu.be/boCvD0Hb6h0

~Education, the Study of Everything


Video Solution

https://youtu.be/W7IwD6sZWco

~savannahsolver

See Also

2016 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png