Difference between revisions of "2016 AMC 10B Problems/Problem 19"
(Created page with "==Problem== Rectangle <math>ABCD</math> has <math>AB=5</math> and <math>BC=4</math>. Point <math>E</math> lies on line <math>AB</math> so that <math>EB=1</math>, point <math>...") |
(→Solution 1 (Coordinate Geometry)) |
||
(46 intermediate revisions by 16 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
+ | Rectangle <math>ABCD</math> has <math>AB=5</math> and <math>BC=4</math>. Point <math>E</math> lies on <math>\overline{AB}</math> so that <math>EB=1</math>, point <math>G</math> lies on <math>\overline{BC}</math> so that <math>CG=1</math>, and point <math>F</math> lies on <math>\overline{CD}</math> so that <math>DF=2</math>. Segments <math>\overline{AG}</math> and <math>\overline{AC}</math> intersect <math>\overline{EF}</math> at <math>Q</math> and <math>P</math>, respectively. What is the value of <math>\frac{PQ}{EF}</math>? | ||
− | |||
− | < | + | <asy>pair A1=(2,0),A2=(4,4); |
+ | pair B1=(0,4),B2=(5,1); | ||
+ | pair C1=(5,0),C2=(0,4); | ||
+ | draw(A1--A2); | ||
+ | draw(B1--B2); | ||
+ | draw(C1--C2); | ||
+ | draw((0,0)--B1--(5,4)--C1--cycle); | ||
+ | dot((20/7,12/7)); | ||
+ | dot((3.07692307692,2.15384615384)); | ||
+ | label("$Q$",(3.07692307692,2.15384615384),N); | ||
+ | label("$P$",(20/7,12/7),W); | ||
+ | label("$A$",(0,4), NW); | ||
+ | label("$B$",(5,4), NE); | ||
+ | label("$C$",(5,0),SE); | ||
+ | label("$D$",(0,0),SW); | ||
+ | label("$F$",(2,0),S); label("$G$",(5,1),E); | ||
+ | label("$E$",(4,4),N);</asy> | ||
+ | |||
+ | <math>\textbf{(A)}~\frac{\sqrt{13}}{16} \qquad | ||
+ | \textbf{(B)}~\frac{\sqrt{2}}{13} \qquad | ||
+ | \textbf{(C)}~\frac{9}{82} \qquad | ||
+ | \textbf{(D)}~\frac{10}{91}\qquad | ||
+ | \textbf{(E)}~\frac19</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==Solution 1 (Coordbash)== | ||
+ | |||
+ | First, we will define point <math>D</math> as the origin. Then, we will find the equations of the following three lines: <math>AG</math>, <math>AC</math>, and <math>EF</math>. The slopes of these lines are <math>-\frac{3}{5}</math>, <math>-\frac{4}{5}</math>, and <math>2</math>, respectively. Next, we will find the equations of <math>AG</math>, <math>AC</math>, and <math>EF</math>. They are as follows: | ||
+ | <cmath>AG = f(x) = -\frac{3}{5}x + 4</cmath> | ||
+ | <cmath>AC = g(x) = -\frac{4}{5}x + 4</cmath> | ||
+ | <cmath>EF = h(x) = 2x - 4</cmath> | ||
+ | After drawing in altitudes to <math>DC</math> from <math>P</math>, <math>Q</math>, and <math>E</math>, we see that <math>\frac{PQ}{EF} = \frac{P'Q'}{E'F}</math> because of similar triangles, and so we only need to find the x-coordinates of <math>P</math> and <math>Q</math>. | ||
+ | <asy> pair A1=(2,0),A2=(4,4); | ||
+ | pair B1=(0,4),B2=(5,1); | ||
+ | pair C1=(5,0),C2=(0,4); | ||
+ | pair D1=(20/7,0),D2=(20/7,12/7); | ||
+ | pair E1=(40/13,0),E2=(40/13,28/13); | ||
+ | pair F1=(4,0),F2=(4,4); | ||
+ | draw(A1--A2); | ||
+ | draw(B1--B2); | ||
+ | draw(C1--C2); | ||
+ | draw(D1--D2,dashed); | ||
+ | draw(E1--E2,dashed); | ||
+ | draw(F1--F2,dashed); | ||
+ | draw((0,0)--B1--(5,4)--C1--cycle); | ||
+ | dot((20/7,12/7)); | ||
+ | dot((3.07692307692,2.15384615384)); | ||
+ | dot((20/7,0)); | ||
+ | dot((40/13,0)); | ||
+ | dot((4,0)); | ||
+ | label("$Q$",(3.07692307692,2.15384615384),N); | ||
+ | label("$P$",(20/7,12/7),W); | ||
+ | label("$A$",(0,4), NW); | ||
+ | label("$B$",(5,4), NE); | ||
+ | label("$C$",(5,0),SE); | ||
+ | label("$D$",(0,0),SW); | ||
+ | label("$F$",(2,0),S); label("$G$",(5,1),E); | ||
+ | label("$E$",(4,4),N); | ||
+ | label("$P'$", (20/7,0),SSW); | ||
+ | label("$Q'$", (40/13,0),SSE); | ||
+ | label("$E'$", (4,0),S); | ||
+ | |||
+ | dot(A1); dot(A2); | ||
+ | dot(B1); dot(B2); | ||
+ | dot(C1); dot(C2); | ||
+ | dot((0,0)); dot((5,4));</asy> | ||
+ | Finding the intersections of <math>AC</math> and <math>EF</math>, and <math>AG</math> and <math>EF</math> gives the x-coordinates of <math>P</math> and <math>Q</math> to be <math>\frac{20}{7}</math> and <math>\frac{40}{13}</math>. This means that <math>P'Q' = DQ' - DP' = \frac{40}{13} - \frac{20}{7} = \frac{20}{91}</math>. Now we can find <math>\frac{PQ}{EF} = \frac{P'Q'}{E'F} = \frac{\frac{20}{91}}{2} = \boxed{\textbf{(D)}~\frac{10}{91}}</math> | ||
+ | |||
+ | ==Solution 2 (Similar Triangles)== | ||
+ | <asy> | ||
+ | pair A1=(2,0),A2=(4,4); | ||
+ | pair B1=(0,4),B2=(5,1); | ||
+ | pair C1=(5,0),C2=(0,4); | ||
+ | pair H = (20/3,0); | ||
+ | draw(A1--A2); | ||
+ | draw(B1--B2); | ||
+ | draw(C1--C2); | ||
+ | draw(B1--H); | ||
+ | draw((0,0)--H); | ||
+ | draw((0,0)--B1--(5,4)--C1--cycle); | ||
+ | dot((20/7,12/7)); | ||
+ | dot((3.07692307692,2.15384615384)); | ||
+ | label("$Q$",(3.07692307692,2.15384615384),N); | ||
+ | label("$P$",(20/7,12/7),W); | ||
+ | label("$A$",(0,4), NW); | ||
+ | label("$B$",(5,4), NE); | ||
+ | label("$C$",(5,0),SE); | ||
+ | label("$D$",(0,0),SW); | ||
+ | label("$F$",(2,0),S); label("$G$",(5,1),E); | ||
+ | label("$E$",(4,4),N); | ||
+ | label("$H$",H,E); | ||
+ | |||
+ | |||
+ | </asy> | ||
+ | |||
+ | Extend <math>AG</math> to intersect <math>CD</math> at <math>H</math>. Letting <math>x=\overline{HC}</math>, we have that <cmath>\triangle{HCG}\sim\triangle{HDA}\implies \dfrac{\overline{HC}}{\overline{CG}}=\dfrac{\overline{HD}}{\overline{AD}}\implies \dfrac{x}{1}=\dfrac{x+5}{4}\implies x=\dfrac{5}{3}.</cmath> | ||
+ | |||
+ | Then, notice that <math>\triangle{AEQ}\sim\triangle{HFQ}</math> and <math>\triangle{AEP}\sim\triangle{CFP}</math>. Thus, we see that <cmath>\dfrac{AE}{HF}=\dfrac{EQ}{QF}\implies \dfrac{AE}{HF} = \dfrac{4}{3+\frac{5}{3}} = \dfrac{12}{14}=\dfrac{6}{7}\implies \dfrac{EQ}{EF}=\dfrac{6}{13}</cmath> | ||
+ | and <cmath>\dfrac{AE}{CF}=\dfrac{EP}{FP} \implies \dfrac{4}{3}=\dfrac{EP}{FP}\implies \dfrac{FP}{EF} = \dfrac{3}{7}.</cmath> | ||
+ | Thus, we see that <cmath>\dfrac{PQ}{EF} = 1-\left(\dfrac{6}{13}+\dfrac{3}{7}\right) = 1-\left(\dfrac{42+39}{91}\right) = 1-\left(\dfrac{81}{91}\right) = \boxed{\textbf{(D)}~ \dfrac{10}{91}}.</cmath> | ||
+ | |||
+ | ==Solution 3 (Answer Choices)== | ||
+ | |||
+ | Since the opposite sides of a rectangle are parallel and <math>\angle{APE}</math> <math>=</math> <math>\angle{CPF}</math> due to vertical angles, <math>\triangle{APE}</math> <math>\sim</math> <math>\triangle{CPF}</math>. Furthermore, the ratio between the side lengths of the two triangles is <math>\frac{AE}{FC}</math> <math>=</math> <math>\frac{4}{3}</math>. Labeling <math>EP</math> <math>=</math> <math>4x</math> and <math>FP</math> <math>=</math> <math>3x</math>, we see that <math>EF</math> turns out to be equal to <math>7x</math>. Since the denominator of <math>\frac{PQ}{EF}</math> must now be a multiple of 7, the only possible solution in the answer choices is <math>\boxed{\textbf{(D)}~\frac{10}{91}}</math>. | ||
+ | |||
+ | ==Solution 4 (Area)== | ||
+ | |||
+ | I will calculate <math>\frac{EP}{EF}</math> using similar triangle, and <math>\frac{EQ}{EF}</math> using ratio of area of <math>\triangle AEG</math> to <math>\triangle AFG</math>. | ||
+ | |||
+ | <asy>pair A1=(2,0),A2=(4,4); | ||
+ | pair B1=(0,4),B2=(5,1),B3=(4,4); | ||
+ | pair C1=(5,0),C2=(0,4),C3=(2,0); | ||
+ | draw(A1--A2); | ||
+ | draw(B1--B2); | ||
+ | draw(B2--B3); | ||
+ | draw(C1--C2); | ||
+ | draw(C2--C3); | ||
+ | draw(A1--B2); | ||
+ | draw((0,0)--B1--(5,4)--C1--cycle); | ||
+ | dot((20/7,12/7)); | ||
+ | dot((3.07692307692,2.15384615384)); | ||
+ | label("$Q$",(3.07692307692,2.15384615384),N); | ||
+ | label("$P$",(20/7,12/7),W); | ||
+ | label("$A$",(0,4), NW); | ||
+ | label("$B$",(5,4), NE); | ||
+ | label("$C$",(5,0),SE); | ||
+ | label("$D$",(0,0),SW); | ||
+ | label("$F$",(2,0),S); | ||
+ | label("$G$",(5,1),E); | ||
+ | label("$E$",(4,4),N);</asy> | ||
+ | |||
+ | <cmath>\triangle AEP \sim \triangle CFP, \frac{AE}{CF}=\frac{EP}{FP}, \frac{EP}{FP}=\frac{4}{3}, \frac{EP}{EF}=\frac{4}{7}</cmath> | ||
+ | |||
+ | <cmath>[AEG]=\frac{1}{2} \cdot 4\cdot 3=6</cmath> | ||
+ | <cmath>[AFG]=[ABCD]-[ADF]-[CFG]-[ABG]=20-4-\frac{3}{2}-\frac{15}{2}=7</cmath> | ||
+ | Because <math>\triangle AEG</math> and <math>\triangle AFG</math> share the same base <math>AG</math>, the ratio <math>\frac{[AEG]}{[AFG]}</math> is equal to the ratio of the altitude of <math>\triangle AEG</math> to <math>AG</math> to that of <math>\triangle AFG</math> to <math>AG</math>, which is equal to <math>\frac{EQ}{QF}</math>: | ||
+ | <cmath>\frac{[AEG]}{[AFG]}=\frac{EQ}{QF}=\frac{6}{7}</cmath> | ||
+ | <cmath>\frac{EQ}{EF}=\frac{6}{13}</cmath> | ||
+ | |||
+ | <cmath>\frac{PQ}{EF}=\frac{EP}{EF}-\frac{EQ}{EF}=\frac{4}{7}-\frac{6}{13}=\frac{10}{91}</cmath> | ||
+ | <cmath>\frac{PQ}{EF}=\boxed{\textbf{(D)}~\frac{10}{91}}</cmath> | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ||
+ | |||
+ | ==Solution 5 (Area)== | ||
+ | |||
+ | I will calculate <math>\frac{PQ}{QE}</math> using the ratio of area of <math>\triangle APG</math> to that of <math>\triangle AEG</math>. | ||
+ | |||
+ | <asy>pair A1=(2,0),A2=(4,4); | ||
+ | pair B1=(0,4),B2=(5,1),B3=(20/7,12/7); | ||
+ | pair C1=(5,0),C2=(0,4); | ||
+ | draw(A1--A2); | ||
+ | draw(B1--B2); | ||
+ | draw(C1--C2); | ||
+ | draw(A2--B2); | ||
+ | draw(B2--B3); | ||
+ | draw((0,0)--B1--(5,4)--C1--cycle); | ||
+ | dot((20/7,12/7)); | ||
+ | dot((3.07692307692,2.15384615384)); | ||
+ | label("$Q$",(3.07692307692,2.15384615384),N); | ||
+ | label("$P$",(20/7,12/7),W); | ||
+ | label("$A$",(0,4), NW); | ||
+ | label("$B$",(5,4), NE); | ||
+ | label("$C$",(5,0),SE); | ||
+ | label("$D$",(0,0),SW); | ||
+ | label("$F$",(2,0),S); label("$G$",(5,1),E); | ||
+ | label("$E$",(4,4),N);</asy> | ||
+ | |||
+ | <cmath>[ACG]=\frac{1}{2} \cdot 5 \cdot 1 = \frac{5}{2}</cmath> | ||
+ | <cmath>[CAB]=\frac{1}{2} \cdot 5 \cdot 4=10</cmath> | ||
+ | <cmath>\triangle AEP \sim \triangle CFP</cmath> | ||
+ | <cmath>\frac{CP}{AP}=\frac{CF}{AE}=\frac{3}{4}</cmath> | ||
+ | <cmath>\frac{CP}{AC}=\frac{3}{7}</cmath> | ||
+ | <cmath>\frac{[CPG]}{[CAB]}=\frac{CP}{CA} \cdot \frac{CG}{CB}=\frac{3 \cdot 1}{7 \cdot 4}=\frac{3}{28}</cmath> | ||
+ | <cmath>[CPG]=\frac{3}{28} \cdot [CAB]=\frac{3}{28} \cdot 10=\frac{15}{14}</cmath> | ||
+ | <cmath>[APG]=[ACG]-[CPG]=\frac{5}{2}-\frac{15}{14}=\frac{35-15}{14}=\frac{20}{14}=\frac{10}{7}</cmath> | ||
+ | <cmath>[AEG]=\frac{1}{2} \cdot 4 \cdot 3=6</cmath> | ||
+ | Because <math>\triangle APG</math> and <math>\triangle AEG</math> share the same base <math>AG</math>, the ratio <math>\frac{[APG]}{[AEG]}</math> is equal to the ratio of altitude of <math>\triangle APG</math> to <math>AG</math> to that of <math>\triangle AEG</math> to <math>AG</math>, which is equal to <math>\frac{PQ}{QE}</math>: | ||
+ | <cmath>\frac{PQ}{QE}=\frac{[APG]}{[AEG]}=\frac{\frac{10}{7}}{6}=\frac{10}{42}=\frac{5}{21}</cmath> | ||
+ | <cmath>\frac{PQ}{PE}=\frac{5}{21+5}=\frac{5}{26}</cmath> | ||
+ | <cmath>\frac{PE}{PF}=\frac{AE}{CF}=\frac{4}{3}</cmath> | ||
+ | <cmath>\frac{PE}{EF}=\frac{4}{7}</cmath> | ||
+ | <cmath>\frac{PQ}{PE} \cdot \frac{PE}{EF} = \frac{5}{26} \cdot \frac{4}{7} = \frac{10}{91}</cmath> | ||
+ | <cmath>\frac{PQ}{EF}=\boxed{\textbf{(D)}~\frac{10}{91}}</cmath> | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ||
+ | |||
+ | ==Solution 6 (Coordinate Bash, not as efficient as Solution 1 but it works)== | ||
+ | We set the points | ||
+ | <math>D(0, 0)</math>, <math>A(0, 4)</math>, <math>E(4, 4)</math>, <math>B(5, 4)</math>, <math>G(5, 1)</math>, <math>C(5, 0)</math>, and <math>F(2, 0)</math>. | ||
+ | The equation of <math>\overline{AC}</math> is <math>y=-\frac{4}{5}x+4</math>, the equation of <math>\overline{AG}</math> is <math>y=-\frac{3}{5}x+4</math>, and the equation of <math>\overline{EF}</math> is <math>y=2x-4</math>. Solving the system of equations for <math>\overline{AC}</math> and <math>\overline{EF}</math> to find point <math>P</math>, <math>y=-\frac{4}{5}x+4=2x-4 \longrightarrow \frac{14}{5}x=8 \longrightarrow x=\frac{20}{7}</math> and <math>y=2x-4=\frac{12}{7}</math>. So the coordinate of point P is <math>P(\frac{20}{7}, \frac{12}{7})</math>. Next find point Q by solving the system of equations for <math>\overline{AG}</math> and <math>\overline{EF}</math> to get <math>Q(\frac{40}{13}, \frac{28}{13})</math>. Using the distance formula, <cmath>PQ=\sqrt{\left(\frac{40}{13}-\frac{20}{7}\right)^{2}+\left(\frac{28}{13}-\frac{12}{7}\right)^{2}}=\sqrt{\left(\frac{20}{91}\right)^{2}+\left(\frac{40}{91}\right)^{2}}</cmath> | ||
+ | <cmath>=\sqrt{\frac{400}{8281}+\frac{1600}{8281}}=\sqrt{\frac{2000}{8281}}=\frac{20\sqrt{5}}{91}</cmath> Also using the distance formula, <cmath>EF=\sqrt{\left(4-2\right)^{2}+\left(4-0\right)^{2}}=\sqrt{4+16}=\sqrt{20}=2\sqrt{5}</cmath> Finally, <cmath>\frac{PQ}{EF}=\frac{\frac{20\sqrt{5}}{91}}{2\sqrt{5}}=\frac{10}{91} \Longrightarrow \boxed{\textbf{(D)}~\frac{10}{91}}</cmath> | ||
+ | ~JH. L | ||
+ | |||
+ | |||
+ | == Video Solution by OmegaLearn == | ||
+ | https://youtu.be/GrCtzL0S-Uo?t=911 | ||
+ | |||
+ | ~ pi_is_3.14 | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2016|ab=B|num-b=18|num-a=20}} | ||
+ | {{MAA Notice}} |
Latest revision as of 20:16, 1 November 2024
Contents
Problem
Rectangle has and . Point lies on so that , point lies on so that , and point lies on so that . Segments and intersect at and , respectively. What is the value of ?
Solution 1 (Coordbash)
First, we will define point as the origin. Then, we will find the equations of the following three lines: , , and . The slopes of these lines are , , and , respectively. Next, we will find the equations of , , and . They are as follows: After drawing in altitudes to from , , and , we see that because of similar triangles, and so we only need to find the x-coordinates of and . Finding the intersections of and , and and gives the x-coordinates of and to be and . This means that . Now we can find
Solution 2 (Similar Triangles)
Extend to intersect at . Letting , we have that
Then, notice that and . Thus, we see that and Thus, we see that
Solution 3 (Answer Choices)
Since the opposite sides of a rectangle are parallel and due to vertical angles, . Furthermore, the ratio between the side lengths of the two triangles is . Labeling and , we see that turns out to be equal to . Since the denominator of must now be a multiple of 7, the only possible solution in the answer choices is .
Solution 4 (Area)
I will calculate using similar triangle, and using ratio of area of to .
Because and share the same base , the ratio is equal to the ratio of the altitude of to to that of to , which is equal to :
Solution 5 (Area)
I will calculate using the ratio of area of to that of .
Because and share the same base , the ratio is equal to the ratio of altitude of to to that of to , which is equal to :
Solution 6 (Coordinate Bash, not as efficient as Solution 1 but it works)
We set the points , , , , , , and . The equation of is , the equation of is , and the equation of is . Solving the system of equations for and to find point , and . So the coordinate of point P is . Next find point Q by solving the system of equations for and to get . Using the distance formula, Also using the distance formula, Finally, ~JH. L
Video Solution by OmegaLearn
https://youtu.be/GrCtzL0S-Uo?t=911
~ pi_is_3.14
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.