Difference between revisions of "1962 AHSME Problems/Problem 38"
(→Solution) |
(→Solution) |
||
(One intermediate revision by one other user not shown) | |||
Line 17: | Line 17: | ||
<math>1)</math> <math>b+a</math> <math>=</math> <math>11</math> and <math>b-a</math> <math>=</math> <math>9</math>. | <math>1)</math> <math>b+a</math> <math>=</math> <math>11</math> and <math>b-a</math> <math>=</math> <math>9</math>. | ||
Adding the two equations we get <math>2b</math> <math>=</math> <math>20</math> or <math>b</math> <math>=</math> <math>10</math>, which means <math>a</math> <math>=</math> <math>1</math>. | Adding the two equations we get <math>2b</math> <math>=</math> <math>20</math> or <math>b</math> <math>=</math> <math>10</math>, which means <math>a</math> <math>=</math> <math>1</math>. | ||
− | But looking at the restriction that the | + | But looking at the restriction that the second population + <math>100</math> <math>=</math> third population... |
<math>10^2</math> <math>+</math> <math>1</math> <math>+</math> <math>100</math> <math>=</math> <math>201</math> <math>\neq</math> a perfect square. | <math>10^2</math> <math>+</math> <math>1</math> <math>+</math> <math>100</math> <math>=</math> <math>201</math> <math>\neq</math> a perfect square. | ||
Line 27: | Line 27: | ||
<math>2b</math> <math>=</math> <math>100</math> or <math>b</math> <math>=</math> <math>50</math>, which means <math>a</math> <math>=</math> <math>49</math>. | <math>2b</math> <math>=</math> <math>100</math> or <math>b</math> <math>=</math> <math>50</math>, which means <math>a</math> <math>=</math> <math>49</math>. | ||
Looking at the same restriction, we get <math>50^2</math> + <math>1</math> + <math>100</math> <math>=</math> <math>2500</math> + <math>101</math> <math>=</math> <math>2601</math> <math>=</math> <math>51^2</math>. Thus we find that the original population is <math>a^2</math> <math>=</math> <math>49^2</math> <math>=</math> <math>7^4</math>. Or <math>a^2</math> is a multiple of <math>\boxed{ (B) 7}</math> | Looking at the same restriction, we get <math>50^2</math> + <math>1</math> + <math>100</math> <math>=</math> <math>2500</math> + <math>101</math> <math>=</math> <math>2601</math> <math>=</math> <math>51^2</math>. Thus we find that the original population is <math>a^2</math> <math>=</math> <math>49^2</math> <math>=</math> <math>7^4</math>. Or <math>a^2</math> is a multiple of <math>\boxed{ (B) 7}</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | Let <math>P</math> <math>=</math> original population. Translating the word problem into a system of equations, we got: | ||
+ | <cmath> | ||
+ | \begin{align} | ||
+ | P &= x^2 \\ | ||
+ | P + 100 &= y^2 + 1 \\ | ||
+ | P + 200 &= z^2 | ||
+ | \end{align} | ||
+ | </cmath> | ||
+ | for some positive integers <math>x</math>, <math>y</math> and <math>z</math>. | ||
+ | Now, by subtracting <math>(2)</math> from <math>(3)</math> (i.e. <math>(3) - (2)</math>), we got: | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | 100 &= z^2 - y^2 - 1 \\ | ||
+ | 101 &= z^2 - y^2 \\ | ||
+ | 101 &= (z - y)(z + y) | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | Since y and z are both positive integers and 101 is a prime, by factoring, the only working solution for us is <math>y = 50</math> and <math>z = 51</math>. | ||
+ | Plugging that back to <math>(2)</math> and simplify, we got <math>P = 2401 = (49)^2 = x^2</math>, a multiple of <math>7</math>. | ||
+ | Therefore, the answer is <math>\boxed{(B) 7}</math>. -nullptr07 |
Latest revision as of 15:52, 28 June 2023
Problem
The population of Nosuch Junction at one time was a perfect square. Later, with an increase of , the population was one more than a perfect square. Now, with an additional increase of
, the population is again a perfect square.
The original population is a multiple of:
Solution 1
Let
original population count,
the second population count, and
the third population count
We first see that
or
.
We then factor the right side getting
.
Since we can only have an nonnegative integral population, clearly
and both factor
.
We factor
into
There are a few cases to look at:
and
.
Adding the two equations we get
or
, which means
.
But looking at the restriction that the second population +
third population...
a perfect square.
and
.
Adding the two equations we get
or
, which means
.
Looking at the same restriction, we get
+
+
+
, which is NOT a perfect square.
Finally,
and
.
or
, which means
.
Looking at the same restriction, we get
+
+
+
. Thus we find that the original population is
. Or
is a multiple of
Solution 2
Let
original population. Translating the word problem into a system of equations, we got:
for some positive integers
,
and
.
Now, by subtracting
from
(i.e.
), we got:
Since y and z are both positive integers and 101 is a prime, by factoring, the only working solution for us is
and
.
Plugging that back to
and simplify, we got
, a multiple of
.
Therefore, the answer is
. -nullptr07