Difference between revisions of "2016 AMC 10A Problems/Problem 19"
(→Solution) |
m (→Solution 3(Coordinate Bash)) |
||
(52 intermediate revisions by 31 users not shown) | |||
Line 5: | Line 5: | ||
<math>\textbf{(A) } 7 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 15 \qquad \textbf{(E) } 20</math> | <math>\textbf{(A) } 7 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 15 \qquad \textbf{(E) } 20</math> | ||
− | == Solution == | + | == Solution 1 (Similar Triangles)== |
<asy> | <asy> | ||
Line 24: | Line 24: | ||
</asy> | </asy> | ||
− | Since <math>\triangle APD \sim \triangle EPB,</math> <math>\frac{DP}{PB}=\frac{AD}{BE}=3.</math> Similarly, <math>\frac{DQ}{QB}=\frac{3}{2}</math>. | + | Use similar triangles. Our goal is to put the ratio in terms of <math>{BD}</math>. Since <math>\triangle APD \sim \triangle EPB,</math> <math>\frac{DP}{PB}=\frac{AD}{BE}=3.</math> Therefore, <math>PB=\frac{BD}{4}</math>. Similarly, <math>\frac{DQ}{QB}=\frac{3}{2}</math>. This means that <math>{DQ}=\frac{3\cdot BD}{5}</math>. Therefore, <math>r:s:t=\frac{1}{4}:\frac{2}{5}-\frac{1}{4}:\frac{3}{5}=5:3:12,</math> so <math>r+s+t=\boxed{\textbf{(E) }20.}</math> |
+ | |||
+ | ==Solution 2 (Mass points and Similar Triangles - Easy)== | ||
+ | <asy> | ||
+ | size(9cm); | ||
+ | pair D=(0,0), C=(6,0), B=(6,3), A=(0,3), G=(2, 1), H=(9, 0); | ||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(B--D); | ||
+ | draw(A--(6,2)); | ||
+ | draw(A--(6,1)); | ||
+ | draw(A--H); | ||
+ | draw((6,1)--G); | ||
+ | draw(D--H); | ||
+ | label("$A$", A, dir(135)); | ||
+ | label("$B$", B, dir(45)); | ||
+ | label("$C$", C, dir(-45)); | ||
+ | label("$D$", D, dir(-135)); | ||
+ | label("$Q$", extension(A,(6,1),B,D),dir(-90)); | ||
+ | label("$P$", extension(A,(6,2),B,D), dir(90)); | ||
+ | label("$F$", (6,1), dir(45)); | ||
+ | label("$E$", (6,2), dir(45)); | ||
+ | label("$H$", H, dir(0)); | ||
+ | label("$G$", G, dir(135)); | ||
+ | </asy> | ||
+ | |||
+ | This problem breaks down into finding <math>QP:PB</math> and <math>DQ:QB</math>. We can find the first using mass points, and the second using similar triangles. | ||
+ | |||
+ | Draw point <math>G</math> on <math>DB</math> such that <math>FG\parallel CD</math>. Then, by similar triangles <math>FG=BF\cdot 2=4</math>. Again, by similar triangles <math>AQB</math> and <math>FQG</math>, <math>AQ:FQ=AB:FG=6:4=3:2</math>. Now we begin Mass Points. | ||
+ | |||
+ | We will consider the triangle <math>ABF</math> with center <math>P</math>, so that <math>E</math> balances <math>B</math> and <math>F</math>, and <math>Q</math> balances <math>A</math> and <math>F</math>. Assign a mass of <math>1</math> to <math>B</math>. Then, <math>BE:FE=1:1</math> so <math>F=B=1</math>. By mass points addition, <math>E=B+F=2</math> since <math>E</math> balances <math>B</math> and <math>F</math>. | ||
+ | Also, <math>AQ:QF=3:2</math> so <math>A=\frac{2}{3}F=\frac{2}{3}</math> so <math>Q=\frac{5}{3}</math>. Then, <math>QP:PB=1:\frac{5}{3}=3:5</math>. | ||
+ | |||
+ | To calculate <math>DQ:BQ</math>, extend <math>AF</math> past <math>F</math> to point <math>H</math> such that <math>H</math> lies on <math>BC</math>. Then <math>AFB</math> is similar to <math>HAD</math> so <math>DH=3\cdot AD=9</math>. Also, <math>AQB</math> is similar to <math>HQD</math> so <math>DQ:BQ=9:6=3:2</math> | ||
+ | |||
+ | Now, we wish to get <math>DQ:QP:PB</math>. Observe that <math>BQ=QP+PB</math>. So, <math>DQ:BQ=DQ:QP+PB=3:2</math> so (since <math>QP:PB=3:5</math> has sum <math>3+5=8</math>), <math>DQ:QP+PB=3:2=12:8</math>. now, we may combine the two and get <math>DQ:QP:PB=12:3:5</math> so <math>r+s+t=12+3+5=\boxed{\textbf{(E) }20}</math>. | ||
+ | |||
+ | ~Firebolt360(minor edits by vadava_lx) | ||
+ | |||
+ | ==Solution 3(Coordinate Bash)== | ||
+ | |||
+ | We can set coordinates for the points. <math>D=(0,0), C=(6,0), B=(6,3),</math> and <math>A=(0,3)</math>. The line <math>BD</math>'s equation is <math>y = \frac{1}{2}x</math>, line <math>AE</math>'s equation is <math>y = -\frac{1}{6}x + 3</math>, and line <math>AF</math>'s equation is <math>y = -\frac{1}{3}x + 3</math>. Adding the equations of lines <math>BD</math> and <math>AE</math>, we find that the coordinates of <math>P</math> are <math>\left(\frac{9}{2},\frac{9}{4}\right)</math>. Furthermore we find that the coordinates of <math>Q</math> are <math>\left(\frac{18}{5}, \frac{9}{5}\right)</math>. Using the [[Pythagorean Theorem]], we get that the length of <math>QD</math> is <math>\sqrt{\left(\frac{18}{5}\right)^2+\left(\frac{9}{5}\right)^2} = \sqrt{\frac{405}{25}} = \frac{\sqrt{405}}{5} = \frac{9\sqrt{5}}{5}</math>, and the length of <math>DP</math> is <math>\sqrt{\left(\frac{9}{2}\right)^2+\left(\frac{9}{4}\right)^2} = \sqrt{\frac{81}{4} + \frac{81}{16}} = \sqrt{\frac{405}{16}} = \frac{\sqrt{405}}{4} = \frac{9\sqrt{5}}{4}.</math> <math>PQ = DP - DQ = \frac{9\sqrt{5}}{4} - \frac{9\sqrt{5}}{5} = \frac{9\sqrt{5}}{20}.</math> The length of <math>DB = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}</math>. Then <math>BP= 3\sqrt{5} - \frac{9\sqrt{5}}{4} = \frac{3\sqrt{5}}{4}.</math> The ratio <math>BP : PQ : QD = \frac{3\sqrt{5}}{4} : \frac{9\sqrt{5}}{20} : \frac{9\sqrt{5}}{5} = 15\sqrt{5} : 9\sqrt{5} : 36\sqrt{5} = 15 : 9 : 36 = 5 : 3 : 12.</math> Then <math>r, s,</math> and <math>t</math> is <math>5, 3,</math> and <math>12</math>, respectively. The problem tells us to find <math>r + s + t</math>, so <math>5 + 3 + 12 = \boxed{\textbf{(E) }20}</math> ~ minor <math>\LaTeX</math> edits by dolphin7 | ||
+ | |||
+ | ==Solution 4== | ||
+ | |||
+ | Extend <math>AF</math> to meet <math>CD</math> at point <math>T</math>. Since <math>FC=1</math> and <math>BF=2</math>, <math>TC=3</math> by similar triangles <math>\triangle TFC</math> and <math>\triangle AFB</math>. It follows that <math>\frac{BQ}{QD}=\frac{BP+PQ}{QD}=\frac{2}{3}</math>. Now, using similar triangles <math>\triangle BEP</math> and <math>\triangle DAP</math>, <math>\frac{BP}{PD}=\frac{BP}{PQ+QD}=\frac{1}{3}</math>. WLOG let <math>BP=1</math>. Solving for <math>PQ, QD</math> gives <math>PQ=\frac{3}{5}</math> and <math>QD=\frac{12}{5}</math>. So our desired ratio is <math>5:3:12</math> and <math>5+3+12=\boxed{\textbf{(E) } 20}</math>. | ||
+ | |||
+ | ==Solution 5 (Mass Points)== | ||
+ | |||
+ | Draw line segment <math>AC</math>, and call the intersection between <math>AC</math> and <math>BD</math> point <math>K</math>. In <math>\delta ABC</math>, observe that <math>BE:EC=1:2</math> and <math>AK:KC=1:1</math>. Using mass points, find that <math>BP:PK=1:1</math>. Again utilizing <math>\delta ABC</math>, observe that <math>BF:FC=2:1</math> and <math>AK:KC=1:1</math>. Use mass points to find that <math>BQ:QK=4:1</math>. Now, draw a line segment with points <math>B</math>,<math>P</math>,<math>Q</math>, and <math>K</math> ordered from left to right. Set the values <math>BP=x</math>,<math>PK=x</math>,<math>BQ=4y</math> and <math>QK=y</math>. Setting both sides segment <math>BK</math> equal, we get <math>y= \frac{2}{5}x</math>. Plugging in and solving gives <math>QK= \frac{2}{5}x</math>, <math>PQ=\frac{3}{5}x</math>,<math>BP=x</math>. The question asks for <math>BP:PQ:QD</math>, so we add <math>2x</math> to <math>QK</math> and multiply the ratio by <math>5</math> to create integers. This creates <math>5(1:\frac{3}{5}:\frac{12}{5})= 5:3:12</math>. This sums up to <math>3+5+12=\boxed{\textbf{(E) }20}</math> | ||
+ | |||
+ | ==Solution 6 (Easy Coord Bash)== | ||
+ | We set coordinates for the points. Let <math>A=(0,3), B=(6,3), C=(6,0)</math> and <math>D=(0,0)</math>. Then the equation of line <math>AE</math> is <math>y = -\frac{1}{6}x + 3,</math> the equation of line <math>AF</math> is <math>y = -\frac{1}{3}x + 3,</math> and the equation of line <math>BD</math> is <math>y = \frac{1}{2}x</math>. We find that the x-coordinate of point <math>P</math> is <math>\frac 9 2</math> by solving <math> -\frac{1}{6}x + 3=\frac{1}{2}x.</math> Similarly we find that the x-coordinate of point <math>Q</math> is <math>\frac {18} 5</math> by solving <math>-\frac{1}{3}x + 3=\frac{1}{2}x.</math> It follows that <math>BP:PQ:QD=6-\frac 9 2 : \frac 9 2 - \frac {18} 5 : \frac {18} 5= \frac 3 2 : \frac 9 {10} : \frac {18} 5 = 5:3:12.</math> Hence <math>r,s,t=5,3,12</math> and <math>r+s+t=5+3+12=\boxed{\textbf{(E) } 20}.</math> ~ Solution by dolphin7 | ||
+ | |||
+ | ==Video Solution== | ||
+ | |||
+ | https://www.youtube.com/watch?v=aG9JiBMd0ag | ||
+ | |||
+ | ==Video Solution 2== | ||
+ | https://youtu.be/us3e2jMjWnw | ||
+ | |||
+ | ~IceMatrix | ||
+ | |||
+ | == Video Solution 3 by OmegaLearn == | ||
+ | https://youtu.be/4_x1sgcQCp4?t=3406 | ||
+ | |||
+ | ~ pi_is_3.14 | ||
==See Also== | ==See Also== | ||
+ | |||
{{AMC10 box|year=2016|ab=A|num-b=18|num-a=20}} | {{AMC10 box|year=2016|ab=A|num-b=18|num-a=20}} | ||
− | |||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 17:49, 3 October 2024
Contents
Problem
In rectangle and . Point between and , and point between and are such that . Segments and intersect at and , respectively. The ratio can be written as where the greatest common factor of and is What is ?
Solution 1 (Similar Triangles)
Use similar triangles. Our goal is to put the ratio in terms of . Since Therefore, . Similarly, . This means that . Therefore, so
Solution 2 (Mass points and Similar Triangles - Easy)
This problem breaks down into finding and . We can find the first using mass points, and the second using similar triangles.
Draw point on such that . Then, by similar triangles . Again, by similar triangles and , . Now we begin Mass Points.
We will consider the triangle with center , so that balances and , and balances and . Assign a mass of to . Then, so . By mass points addition, since balances and . Also, so so . Then, .
To calculate , extend past to point such that lies on . Then is similar to so . Also, is similar to so
Now, we wish to get . Observe that . So, so (since has sum ), . now, we may combine the two and get so .
~Firebolt360(minor edits by vadava_lx)
Solution 3(Coordinate Bash)
We can set coordinates for the points. and . The line 's equation is , line 's equation is , and line 's equation is . Adding the equations of lines and , we find that the coordinates of are . Furthermore we find that the coordinates of are . Using the Pythagorean Theorem, we get that the length of is , and the length of is The length of . Then The ratio Then and is and , respectively. The problem tells us to find , so ~ minor edits by dolphin7
Solution 4
Extend to meet at point . Since and , by similar triangles and . It follows that . Now, using similar triangles and , . WLOG let . Solving for gives and . So our desired ratio is and .
Solution 5 (Mass Points)
Draw line segment , and call the intersection between and point . In , observe that and . Using mass points, find that . Again utilizing , observe that and . Use mass points to find that . Now, draw a line segment with points ,,, and ordered from left to right. Set the values ,, and . Setting both sides segment equal, we get . Plugging in and solving gives , ,. The question asks for , so we add to and multiply the ratio by to create integers. This creates . This sums up to
Solution 6 (Easy Coord Bash)
We set coordinates for the points. Let and . Then the equation of line is the equation of line is and the equation of line is . We find that the x-coordinate of point is by solving Similarly we find that the x-coordinate of point is by solving It follows that Hence and ~ Solution by dolphin7
Video Solution
https://www.youtube.com/watch?v=aG9JiBMd0ag
Video Solution 2
~IceMatrix
Video Solution 3 by OmegaLearn
https://youtu.be/4_x1sgcQCp4?t=3406
~ pi_is_3.14
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.