Difference between revisions of "1967 AHSME Problems/Problem 14"

(Solution)
(Solution)
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
== Problem ==
+
==Problem==
The number of distinct points common to the curves <math>x^2+4y^2=1</math> and <math>4x^2+y^2=4</math> is:
 
  
<math>\text{(A) } 0 \quad \text{(B) } 1 \quad \text{(C) } 2 \quad \text{(D) } 3 \quad \text{(E) } 4</math>
+
Let <math>f(t)=\frac{t}{1-t}</math>, <math>t \not= 1</math>.  If <math>y=f(x)</math>, then <math>x</math> can be expressed as
 +
 
 +
<math>\textbf{(A)}\ f\left(\frac{1}{y}\right)\qquad
 +
\textbf{(B)}\ -f(y)\qquad
 +
\textbf{(C)}\ -f(-y)\qquad
 +
\textbf{(D)}\ f(-y)\qquad
 +
\textbf{(E)}\ f(y)</math>
  
 
== Solution ==
 
== Solution ==
Let <math>x^2 = a</math> and <math>y^2 = b.</math>  
+
Since we know that <math>y=f(x)</math>, we can solve for <math>y</math> in terms of <math>x</math>. This gives us
 
 
then
 
 
 
        <math>a+4b=1</math>
 
  
and
+
<math>y=\frac{x}{1-x}</math>
  
        <math>4a+b=4</math>
+
<math>\Rightarrow y(1-x)=x</math>
  
By solving we find--
+
<math>\Rightarrow y-yx=x</math>
  
<math>a=1</math>
+
<math>\Rightarrow y=yx+x</math>
  
<math>b=0</math>
+
<math>\Rightarrow y=x(y+1)</math>
  
However <cmath>a=x^2</cmath>
+
<math>\Rightarrow x=\frac{y}{y+1}</math>
and <cmath>b=y^2</cmath>
 
  
Therefore  
+
Therefore, we want to find the function with <math>y</math> that outputs <math>\frac{y}{y+1}</math> Listing out the possible outputs from each of the given functions we get
<math>y=0</math>, and <math>x=1,-1</math>
+
<math>f\left(\frac{1}{y}\right)=\frac{1}{y-1}</math>
  
Thus, the only solutions are <math>(0,1)</math>, and <math>(0,-1)</math>
+
<math>f(y)=\frac{1}{1-y}</math>
  
 +
<math>f(-y)=\frac{-y}{y+1}</math>
  
So there are only 2 solutions
+
<math>-f(y)=\frac{y}{y-1}</math>
  
 +
<math>-f(-y)=\frac{y}{y+1}</math>
  
<math>=></math> <math>\fbox{C}</math>
+
Since <math>-f(-y)=\frac{y}{y+1}=x</math> the answer must be <math>\boxed{C}</math>.
  
 
== See also ==
 
== See also ==
{{AHSME box|year=1967|num-b=13|num-a=15}}   
+
{{AHSME 40p box|year=1967|num-b=13|num-a=15}}   
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 18:42, 22 August 2023

Problem

Let $f(t)=\frac{t}{1-t}$, $t \not= 1$. If $y=f(x)$, then $x$ can be expressed as

$\textbf{(A)}\ f\left(\frac{1}{y}\right)\qquad \textbf{(B)}\ -f(y)\qquad \textbf{(C)}\ -f(-y)\qquad \textbf{(D)}\ f(-y)\qquad \textbf{(E)}\ f(y)$

Solution

Since we know that $y=f(x)$, we can solve for $y$ in terms of $x$. This gives us

$y=\frac{x}{1-x}$

$\Rightarrow y(1-x)=x$

$\Rightarrow y-yx=x$

$\Rightarrow y=yx+x$

$\Rightarrow y=x(y+1)$

$\Rightarrow x=\frac{y}{y+1}$

Therefore, we want to find the function with $y$ that outputs $\frac{y}{y+1}$ Listing out the possible outputs from each of the given functions we get $f\left(\frac{1}{y}\right)=\frac{1}{y-1}$

$f(y)=\frac{1}{1-y}$

$f(-y)=\frac{-y}{y+1}$

$-f(y)=\frac{y}{y-1}$

$-f(-y)=\frac{y}{y+1}$

Since $-f(-y)=\frac{y}{y+1}=x$ the answer must be $\boxed{C}$.

See also

1967 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png