Difference between revisions of "1982 AHSME Problems/Problem 14"
LOTRFan123 (talk | contribs) |
m (→Solution) |
||
(10 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Problem 14== | |
− | |||
− | |||
In the adjoining figure, points <math>B</math> and <math>C</math> lie on line segment <math>AD</math>, and <math>AB, BC</math>, and <math>CD</math> are diameters of circle <math>O, N</math>, and <math>P</math>, respectively. Circles <math>O, N</math>, and <math>P</math> all have radius <math>15</math> and the line <math>AG</math> is tangent to circle <math>P</math> at <math>G</math>. If <math>AG</math> intersects circle <math>N</math> at points <math>E</math> and <math>F</math>, then chord <math>EF</math> has length | In the adjoining figure, points <math>B</math> and <math>C</math> lie on line segment <math>AD</math>, and <math>AB, BC</math>, and <math>CD</math> are diameters of circle <math>O, N</math>, and <math>P</math>, respectively. Circles <math>O, N</math>, and <math>P</math> all have radius <math>15</math> and the line <math>AG</math> is tangent to circle <math>P</math> at <math>G</math>. If <math>AG</math> intersects circle <math>N</math> at points <math>E</math> and <math>F</math>, then chord <math>EF</math> has length | ||
− | + | <asy> size(250); defaultpen(fontsize(10)); pair A=origin, O=(1,0), B=(2,0), N=(3,0), C=(4,0), P=(5,0), D=(6,0), G=tangent(A,P,1,2), E=intersectionpoints(A--G, Circle(N,1))[0], F=intersectionpoints(A--G, Circle(N,1))[1]; draw(Circle(O,1)^^Circle(N,1)^^Circle(P,1)^^G--A--D, linewidth(0.7)); dot(A^^B^^C^^D^^E^^F^^G^^O^^N^^P); label("$A$", A, W); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, dir(0)); label("$P$", P, S); label("$N$", N, S); label("$O$", O, S); label("$E$", E, dir(120)); label("$F$", F, NE); label("$G$", G, dir(100));</asy> | |
− | |||
− | |||
− | + | ==Solution== | |
− | + | Drop a perpendicular line from <math>N</math> to <math>AG</math> at point <math>H</math>. <math>AN=45</math>, and since <math>\triangle{AGP}</math> is similar to <math>\triangle{AHN}</math>. <math>NH=9</math>. <math>NE=NF=15</math> so by the Pythagorean Theorem, <math>EH=HF=12</math>. Thus <math>EF=\boxed{24.}</math> Answer is then <math>\boxed{C}</math>. |
Latest revision as of 21:35, 16 August 2022
Problem 14
In the adjoining figure, points and lie on line segment , and , and are diameters of circle , and , respectively. Circles , and all have radius and the line is tangent to circle at . If intersects circle at points and , then chord has length
Solution
Drop a perpendicular line from to at point . , and since is similar to . . so by the Pythagorean Theorem, . Thus Answer is then .