Difference between revisions of "1952 AHSME Problems/Problem 50"

m (Corrected AHSME box format)
m (Problem)
 
(3 intermediate revisions by one other user not shown)
Line 2: Line 2:
  
 
A line initially 1 inch long grows according to the following law, where the first term is the initial length.  
 
A line initially 1 inch long grows according to the following law, where the first term is the initial length.  
<cmath> 1+\frac{1}{4}\sqrt{2}+\frac{1}{4}+\frac{1}{16}\sqrt{2}+\frac{1}{16}+\frac{1}{64}\sqrt{2}+\frac{1}{64}+\cdots </cmath>
+
<math>1+\frac{1}{4}\sqrt{2}+\frac{1}{4}+\frac{1}{16}\sqrt{2}+\frac{1}{16}+\frac{1}{64}\sqrt{2}+\frac{1}{64}+\cdots</math>
  
 
If the growth process continues forever, the limit of the length of the line is:  
 
If the growth process continues forever, the limit of the length of the line is:  
Line 13: Line 13:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
We can rewrite our sum as the sum of two infinite geometric sequences.
 +
<cmath>1 + \frac{1}{4}\sqrt{2} + \frac{1}{4} + \frac{1}{16}\sqrt{2} + \frac{1}{16} + ... = </cmath>
 +
<cmath>(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + (\frac{1}{4}\sqrt{2} + \frac{1}{16}\sqrt{2} + \frac{1}{64}\sqrt{2} + ...)</cmath>
 +
<cmath>(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + \sqrt{2}(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...)</cmath>
 +
We now take the sum of each of the infinite geometric sequences separately
 +
<cmath>(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + \sqrt{2}(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) = </cmath>
 +
<cmath>\frac{1}{1 - \frac{1}{4}} + \sqrt{2}(\frac{\frac{1}{4}}{1 - \frac{1}{4}})</cmath>
 +
<cmath>\frac{4}{3} + \frac{\sqrt{2}}{3}</cmath>
 +
<cmath>\frac{1}{3}(4 + \sqrt{2})</cmath>
 +
 
 +
Therefore, the answer is <math>\fbox{(D)}</math>
  
 
== See also ==
 
== See also ==

Latest revision as of 11:51, 9 May 2024

Problem

A line initially 1 inch long grows according to the following law, where the first term is the initial length. $1+\frac{1}{4}\sqrt{2}+\frac{1}{4}+\frac{1}{16}\sqrt{2}+\frac{1}{16}+\frac{1}{64}\sqrt{2}+\frac{1}{64}+\cdots$

If the growth process continues forever, the limit of the length of the line is:

$\textbf{(A) } \infty\qquad \textbf{(B) } \frac{4}{3}\qquad \textbf{(C) } \frac{8}{3}\qquad \textbf{(D) } \frac{1}{3}(4+\sqrt{2})\qquad \textbf{(E) } \frac{2}{3}(4+\sqrt{2})$

Solution

We can rewrite our sum as the sum of two infinite geometric sequences. \[1 + \frac{1}{4}\sqrt{2} + \frac{1}{4} + \frac{1}{16}\sqrt{2} + \frac{1}{16} + ... =\] \[(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + (\frac{1}{4}\sqrt{2} + \frac{1}{16}\sqrt{2} + \frac{1}{64}\sqrt{2} + ...)\] \[(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + \sqrt{2}(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...)\] We now take the sum of each of the infinite geometric sequences separately \[(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + \sqrt{2}(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) =\] \[\frac{1}{1 - \frac{1}{4}} + \sqrt{2}(\frac{\frac{1}{4}}{1 - \frac{1}{4}})\] \[\frac{4}{3} + \frac{\sqrt{2}}{3}\] \[\frac{1}{3}(4 + \sqrt{2})\]

Therefore, the answer is $\fbox{(D)}$

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 49
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png