Difference between revisions of "1982 USAMO Problems/Problem 3"
m (→Solution) |
|||
Line 16: | Line 16: | ||
Proof. <cmath>\tan x \tan (A - x) = \tan x \cdot \frac{\tan A - \tan x}{1 + \tan A \tan x} = 1 - \frac{1}{\cos^2 x (1 + \tan A \tan x)}</cmath> | Proof. <cmath>\tan x \tan (A - x) = \tan x \cdot \frac{\tan A - \tan x}{1 + \tan A \tan x} = 1 - \frac{1}{\cos^2 x (1 + \tan A \tan x)}</cmath> | ||
− | <cmath>= 1 - \frac{2}{1 + \cos 2x + \tan A \sin 2x} = 1 - \frac{2}{1 + \sec A \cos (A - 2x)</cmath> is increasing on the desired interval, because <math>\cos (A - 2x)</math> is increasing on <math>0 < x < \frac{A}{2}.</math> | + | <cmath>= 1 - \frac{2}{1 + \cos 2x + \tan A \sin 2x} = 1 - \frac{2}{1 + \sec A \cos (A - 2x)}</cmath> is increasing on the desired interval, because <math>\cos (A - 2x)</math> is increasing on <math>0 < x < \frac{A}{2}.</math> |
Let <math>x_1, y_1, z_1</math> and <math>x_2, y_2, z_2</math> be half of the angles of triangles <math>A_1 BC</math> and <math>A_2 BC</math> in that order, respectively. Then it is immediate that <math>30^\circ > y_1 > y_2</math>, <math>30^\circ > z_1 > z_2</math>, and <math>x_1 + y_1 + z_1 = x_2 + y_2 + z_2 = 90^\circ</math>. Hence, by Lemma it follows that | Let <math>x_1, y_1, z_1</math> and <math>x_2, y_2, z_2</math> be half of the angles of triangles <math>A_1 BC</math> and <math>A_2 BC</math> in that order, respectively. Then it is immediate that <math>30^\circ > y_1 > y_2</math>, <math>30^\circ > z_1 > z_2</math>, and <math>x_1 + y_1 + z_1 = x_2 + y_2 + z_2 = 90^\circ</math>. Hence, by Lemma it follows that |
Latest revision as of 22:29, 18 May 2015
Problem
If a point is in the interior of an equilateral triangle and point is in the interior of , prove that
,
where the isoperimetric quotient of a figure is defined by
Solution
First, an arbitrary triangle has isoperimetric quotient (using the notation for area and ):
Lemma. is increasing on , where .
Proof. is increasing on the desired interval, because is increasing on
Let and be half of the angles of triangles and in that order, respectively. Then it is immediate that , , and . Hence, by Lemma it follows that Multiplying this inequality by gives that , as desired.
See Also
1982 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.