Difference between revisions of "Angle Bisector Theorem"

(Method 3)
(Redirected page to Angle bisector theorem)
(Tag: New redirect)
 
(29 intermediate revisions by 13 users not shown)
Line 1: Line 1:
{{WotWAnnounce|week=June 6-12}}
+
#REDIRECT[[Angle bisector theorem]]
 
 
== Introduction ==
 
The '''Angle Bisector Theorem''' states that given [[triangle]] <math>\triangle ABC</math> and [[angle bisector]] AD, where D is on side BC,  then <math> \frac cm = \frac bn </math>.  Likewise, the converse of this theorem holds as well.
 
 
 
<asy>
 
size(200);
 
defaultpen(fontsize(10));
 
real a,b,c,d;
 
pair A=(1,4), B=(-5,0), C=(3,0), D;
 
b = abs(C-A);
 
c = abs(B-A);
 
D = (b*B+c*C)/(b+c);
 
draw(A--B--C--A--D);
 
MA(B,A,D,0.5,black);
 
MA(D,A,C,0.6,black);
 
label("$A$",A,(1,1));label("$B$",B,(-1,-1));label("$C$",C,(1,-1));label("$D$",D,(0,-1));
 
label("$b$",(A+C)/2,(1,0));label("$c$",(A+B)/2,(0,1));label("$m$",(B+D)/2,(0,-1));label("$n$",(D+C)/2,(0,-1));
 
dot(A^^B^^C^^D);
 
</asy>
 
 
 
== Proof ==
 
===Method 1 ===
 
Because of the [[ratio]]s and equal [[angle]]s in the theorem, we think of [[similarity | similar]] triangles.  There are not any similar triangles in the figure as it now stands, however.  So, we think to draw in a carefully chosen line or two.  Extending AD until it hits the line through C [[parallel]] to AB does just the trick:
 
 
 
<asy>
 
size(200);
 
defaultpen(fontsize(10));
 
real a,b,c,d,m,n;
 
pair A=(1,4), B=(-5,0), C=(3,0), D, E;
 
b = abs(C-A);c = abs(B-A);
 
D = (b*B+c*C)/(b+c);
 
m = abs(B-D);n = abs(C-D);
 
E = C+(B-A)*n/m;
 
draw(A--B--C--A--E--C);
 
MA(B,A,D,0.5,blue+linewidth(1));
 
MA(D,A,C,0.6,blue+linewidth(1));
 
MA(C,E,A,0.6,blue+linewidth(1));
 
MA(C,B,A,0.6,green+linewidth(1));
 
MA(B,C,E,0.6,green+linewidth(1));
 
label("$A$",A,(1,1));label("$B$",B,(-1,-1));label("$C$",C,(1,-1));label("$D$",D,(1,-1));label("$E$",E,(0,-1));
 
label("$b$",(A+C)/2,(1,0));label("$c$",(A+B)/2,(0,1));label("$m$",(B+D)/2,(0,-1));label("$n$",(D+C)/2,(0,-1));label("$b$",(E+C)/2,(1,-0.5));
 
dot(A^^B^^C^^D^^E);
 
</asy>
 
 
 
Since AB and CE are parallel, we know that <math> \angle BAE=\angle CEA </math> and <math> \angle BCE=\angle ABC </math>.  Triangle ACE is [[isosceles triangle | isosceles]], with AC = CE.
 
 
 
By [[AA similarity]], <math> \triangle DAB \cong \triangle DEC </math>.  By the properties of similar triangles, we arrive at our desired result:
 
 
 
<center><math> \frac cm = \frac bn.</math> </center>
 
 
 
=== Method 2 ===
 
Let <math> AD = d </math>.  Now, we can express the area of triangle ABD in two ways:
 
 
 
<center><math> [ABD] = \frac 12 cd\sin \angle BAD = \frac 12  md \sin \angle ADB. </math></center>
 
 
 
Thus, <math> \frac{\sin \angle ADB}{\sin \angle BAD} = \frac cm </math>.
 
 
 
Likewise, triangle ACD can be expressed in two different ways:
 
 
 
<center><math> [ACD] = \frac 12 bd \sin \angle CAD = \frac 12 dn \sin \angle ADC. </math></center>
 
 
 
Thus, <math> \frac{\sin \angle ADC}{\sin \angle CAD} = \frac bn</math>.
 
 
 
But <math> \angle CAD \cong \angle BAD </math> and <math> \sin \angle ADC = \sin \angle ADB </math> since <math> \angle ADC = \pi - \angle ADB </math>.  Therefore, we can substitute back into our previous equation to get <math> \frac{\sin \angle ADB}{\sin \angle BAD} = \frac bn </math>.
 
 
 
We conclude that <math> \frac{\sin \angle ADB}{\sin \angle BAD} = \frac cm = \frac bn </math>, which was what we wanted.
 
 
 
In both cases, if we reverse all the steps, we see that everything still holds and thus the converse holds.
 
 
 
=== Method 3 ===
 
Let <math>AD = d</math>. Now, we can express the area of triangle ABD in two ways:
 
 
 
<math>[ABD] = \frac 12 cd\sin \angle BAD = \frac 12  md \sin \angle ADB.</math>
 
Thus, <math>\frac{\sin \angle ADB}{\sin \angle BAD} = \frac cm</math>.
 
 
 
Likewise, triangle ACD can be expressed in two different ways:
 
 
 
<math>[ACD] = \frac 12 bd \sin \angle CAD = \frac 12 dn \sin \angle ADC.</math>
 
Thus, <math>\frac{\sin \angle ADC}{\sin \angle CAD} = \frac bn</math>.
 
 
 
But <math>\angle CAD \cong \angle BAD</math> and <math>\sin \angle ADC = \sin \angle ADB</math> since <math>\angle ADC = \pi - \angle ADB</math>. Therefore, we can substitute back into our previous equation to get <math>\frac{\sin \angle ADB}{\sin \angle BAD} = \frac bn</math>.
 
 
 
We conclude that <math>\frac{\sin \angle ADB}{\sin \angle BAD} = \frac cm = \frac bn</math>, which was what we wanted.
 
 
 
In both cases, if we reverse all the steps, we see that everything still holds and thus the converse holds.
 
 
 
== Examples ==
 
 
 
# Let ABC be a triangle with angle bisector AD with D on line segment BC.  If <math> BD = 2, CD = 5,</math> and <math> AB + AC = 10 </math>, find AB and AC.<br> '''''Solution:''''' By the angle bisector theorem, <math> \frac{AB}2 = \frac{AC}5</math> or <math> AB = \frac 25 AC </math>.  Plugging this into <math> AB + AC = 10 </math> and solving for AC gives <math> AC = \frac{50}7</math>.  We can plug this back in to find <math> AB = \frac{20}7 </math>.
 
# In triangle ABC, let P be a point on BC and let <math> AB = 20, AC = 10, BP = \frac{20\sqrt{3}}3, CP = \frac{10\sqrt{3}}3 </math>.  Find the value of <math> m\angle BAP - m\angle CAP </math>. <br> '''''Solution:'''''  First, we notice that <math> \frac{AB}{BP}=\frac{AC}{CP} </math>.  Thus, AP is the angle bisector of angle A, making our answer 0.
 
# Part '''(b)''', [[1959 IMO Problems/Problem 5]].
 
 
 
== See also ==
 
* [[Angle bisector]]
 
* [[Geometry]]
 
* [[Stewart's Theorem]]
 
 
 
[[Category:Geometry]]
 
 
 
[[Category:Theorems]]
 

Latest revision as of 15:23, 9 May 2021