|
|
(32 intermediate revisions by 17 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2010 AMC 12B Problems/Problem 21]] |
− | Let <math>a > 0</math>, and let <math>P(x)</math> be a polynomial with integer coefficients such that
| |
− | | |
− | <center>
| |
− | <math>P(1) = P(3) = P(5) = P(7) = a</math>, and<br/>
| |
− | <math>P(2) = P(4) = P(6) = P(8) = -a</math>.
| |
− | </center>
| |
− | | |
− | What is the smallest possible value of <math>a</math>?
| |
− | | |
− | <math>\textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!</math>
| |
− | | |
− | == Solution ==
| |
− | We observe that because <math>P(1) = P(3) = P(5) = P(7) = a</math>, if we define a new polynomial <math>R(x)</math> such that <math>R(x) = P(x) - a</math>, <math>R(x)</math> has roots when <math>P(x) = a</math>; namely, when <math>x=1,3,5,7</math>.
| |
− | | |
− | Thus since <math>R(x)</math> has roots when <math>x=1,3,5,7</math>, we can factor the product <math>(x-1)(x-3)(x-5)(x-7)</math> out of <math>R(x)</math> to obtain a new polynomial <math>Q(x)</math> such that <math>(x-1)(x-3)(x-5)(x-7)(Q(x)) = R(x) = P(x) - a</math>.
| |
− | | |
− | Then, plugging in values of <math>2,4,6,8,</math> we get
| |
− | | |
− | <cmath>P(2)-a=(2-1)(2-3)(2-5)(2-7)Q(2) = -15Q(2) = -2a</cmath>
| |
− | <cmath>P(4)-a=(4-1)(4-3)(4-5)(4-7)Q(4) = 9Q(4) = -2a</cmath>
| |
− | <cmath>P(6)-a=(6-1)(6-3)(6-5)(6-7)Q(6) = -15Q(6) = -2a</cmath>
| |
− | <cmath>P(8)-a=(8-1)(8-3)(8-5)(8-7)Q(8) = 105Q(8) = -2a</cmath>
| |
− | | |
− | <math>-2a=-15Q(2)=9Q(4)=-15Q(6)=105Q(8).</math>
| |
− | Thus, the least value of <math>a</math> must be the <math>lcm(15,9,15,105)</math>.
| |
− | Solving, we receive <math>315</math>, so our answer is <math> \boxed{\textbf{(B)}\ 315} </math>.
| |
− | | |
− | == Critique ==
| |
− | | |
− | The above solution is incomplete. What is really proven is that 315 is a factor of <math>a</math>, if such an <math>a</math> exists. That only rules out answer A.
| |
− | | |
− | To prove that the answer is correct, one could exhibit a polynomium that satisfies the requirements with <math>a=315</math>. Here's one: <math>P(x) = -8x^7 + 252 x^6 -3248x^5 + 22050x^4 -84392x^3 + 179928x^2-194592x+80325</math>.
| |
− | | |
− | You get that from the <math>8\times8</math> matrix <math>M_{i,j} = i^{j-1}</math> and <math>y^T=(315,-315,\ldots,315,-315)</math> and computing <math>c=M^{-1}y</math> which comes out as the all-integer coefficients above.
| |
− | | |
− | == See also ==
| |
− | {{AMC10 box|year=2010|ab=B|num-b=24|after=Last question}}
| |
− | | |
− | [[Category:Intermediate Algebra Problems]] | |
− | {{MAA Notice}}
| |