Difference between revisions of "1991 AIME Problems/Problem 12"

 
m (Solution)
 
(34 intermediate revisions by 13 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
[[Rhombus]] <math>PQRS^{}_{}</math> is [[inscribe]]d in [[rectangle]] <math>ABCD^{}_{}</math> so that [[vertex|vertices]] <math>P^{}_{}</math>, <math>Q^{}_{}</math>, <math>R^{}_{}</math>, and <math>S^{}_{}</math> are interior points on sides <math>\overline{AB}</math>, <math>\overline{BC}</math>, <math>\overline{CD}</math>, and <math>\overline{DA}</math>, respectively. It is given that <math>PB^{}_{}=15</math>, <math>BQ^{}_{}=20</math>, <math>PR^{}_{}=30</math>, and <math>QS^{}_{}=40</math>. Let <math>\frac{m}{n}</math>, in lowest terms, denote the [[perimeter]] of <math>ABCD^{}_{}</math>. Find <math>m+n^{}_{}</math>.
  
 +
__TOC__
 
== Solution ==
 
== Solution ==
 +
<center><asy>defaultpen(fontsize(12)+linewidth(1.3)); pair A=(0,28.8), B=(38.4,28.8), C=(38.4,0), D=(0,0), O, P=(23.4,28.8), Q=(38.4,8.8), R=(15,0), S=(0,20); O=intersectionpoint(A--C,B--D); draw(A--B--C--D--cycle);draw(P--R..Q--S); draw(P--Q--R--S--cycle); label("\(A\)",A,NW);label("\(B\)",B,NE);label("\(C\)",C,SE);label("\(D\)",D,SW); label("\(P\)",P,N);label("\(Q\)",Q,E);label("\(R\)",R,SW);label("\(S\)",S,W); label("\(15\)",B/2+P/2,N);label("\(20\)",B/2+Q/2,E);label("\(O\)",O,SW); </asy></center>
 +
=== Solution 1 ===
 +
Let <math>O</math> be the center of the rhombus. Via [[parallel]] sides and alternate interior angles, we see that the opposite [[triangle]]s are [[congruent]] (<math>\triangle BPQ \cong \triangle DRS</math>, <math>\triangle APS \cong \triangle CRQ</math>). Quickly we realize that <math>O</math> is also the center of the rectangle.
 +
 +
By the [[Pythagorean Theorem]], we can solve for a side of the rhombus; <math>PQ = \sqrt{15^2 + 20^2} = 25</math>. Since the [[diagonal]]s of a rhombus are [[perpendicular bisector]]s, we have that <math>OP = 15, OQ = 20</math>. Also, <math>\angle POQ = 90^{\circ}</math>, so quadrilateral <math>BPOQ</math> is [[cyclic quadrilateral|cyclic]]. By [[Ptolemy's Theorem]], <math>25 \cdot OB = 20 \cdot 15 + 15 \cdot 20 = 600</math>.
 +
 +
By similar logic, we have <math>APOS</math> is a cyclic quadrilateral. Let <math>AP = x</math>, <math>AS = y</math>. The Pythagorean Theorem gives us <math>x^2 + y^2 = 625\quad \mathrm{(1)}</math>. Ptolemy’s Theorem gives us <math>25 \cdot OA = 20x + 15y</math>. Since the diagonals of a rectangle are equal, <math>OA = \frac{1}{2}d = OB</math>, and <math>20x + 15y = 600\quad \mathrm{(2)}</math>. Solving for <math>y</math>, we get <math>y = 40 - \frac 43x</math>. Substituting into <math>\mathrm{(1)}</math>,
 +
 +
<cmath>\begin{eqnarray*}x^2 + \left(40-\frac 43x\right)^2 &=& 625\\
 +
5x^2 - 192x + 1755 &=& 0\\
 +
x = \frac{192 \pm \sqrt{192^2 - 4 \cdot 5 \cdot 1755}}{10} &=& 15, \frac{117}{5}\end{eqnarray*}</cmath>
 +
 +
We reject <math>15</math> because then everything degenerates into squares, but the condition that <math>PR \neq QS</math> gives us a [[contradiction]]. Thus <math>x = \frac{117}{5}</math>, and backwards solving gives <math>y = \frac{44}5</math>. The perimeter of <math>ABCD</math> is <math>2\left(20 + 15 + \frac{117}{5} + \frac{44}5\right) = \frac{672}{5}</math>, and <math>m + n = \boxed{677}</math>.
 +
 +
=== Solution 2 ===
 +
From above, we have <math>OB = 24</math> and <math>BD = 48</math>. Returning to <math>BPQO,</math> note that <math>\angle PQO\cong \angle PBO \cong ABD.</math> Hence, <math>\triangle ABD \sim \triangle OQP</math> by <math>AA</math> [[similar triangle|similar]]ity. From here, it's clear that
 +
<cmath>
 +
\frac {AD}{BD} = \frac {OP}{PQ}\implies \frac {AD}{48} = \frac {15}{25}\implies AD = \frac {144}{5}.
 +
</cmath>
 +
Similarly,
 +
<cmath>
 +
\frac {AB}{BD} = \frac {IQ}{PQ}\implies \frac {AB}{48} = \frac {20}{25}\implies AB = \frac {192}{5}.
 +
</cmath>
 +
Therefore, the perimeter of rectangle <math>ABCD</math> is <math>2(AB + AD) = 2\left(\frac {192}{5} + \frac {144}{5}\right) = \frac {672}{5}.</math>
 +
 +
=== Solution 3 ===
 +
The triangles <math>QOB,OBC</math> are [[isosceles triangle|isosceles]], and [[similar triangles|similar]] (because they have <math>\angle QOB = \angle OBC</math>).
 +
 +
Hence <math>\frac {BQ}{OB} = \frac {OB}{BC} \Rightarrow OB^2 = BC \cdot BQ</math>.
 +
 +
The length of <math>OB</math> could be found easily from the area of <math>BPQ</math>:
 +
 +
<cmath>BP \cdot BQ = \frac {OB}{2} \cdot PQ \Rightarrow OB = \frac {2BP\cdot BQ}{PQ} \Rightarrow OB = 24</cmath>
 +
<cmath>OB^2 = BC \cdot BQ \Rightarrow 24^2 = (20 + CQ) \cdot 20 \Rightarrow CQ = \frac {44}{5}</cmath>
 +
 +
From the right triangle <math>CRQ</math> we have <math>RC^2 = 25^2 - \left(\frac {44}{5}\right)^2\Rightarrow RC = \frac {117}{5}</math>. We could have also defined a similar formula: <math>OB^2 = BP \cdot BA</math>, and then we found <math>AP</math>, the segment <math>OB</math> is tangent to the circles with diameters <math>AO,CO</math>.
 +
 +
The perimeter is <math>2(PB + BQ + QC + CR) = 2\left(15 + 20 + \frac {44 + 117}{5}\right) = \frac {672}{5}\Rightarrow m+n=677</math>.
 +
 +
=== Solution 4 ===
 +
For convenience, let <math>\angle PQS = \theta</math>. Since the opposite triangles are congruent we have that <math>\angle BQR = 3\theta</math>, and therefore <math>\angle QRC = 3\theta - 90</math>. Let <math>QC = a</math>, then we have <math>\sin{(3\theta - 90)} = \frac {a}{25}</math>, or <math>- \cos{3\theta} = \frac {a}{25}</math>. Expanding with the formula <math>\cos{3\theta} = 4\cos^3{\theta} - 3\cos{\theta}</math>, and since we have <math>\cos{\theta} = \frac {4}{5}</math>, we can solve for <math>a</math>. The rest then follows similarily from above.
 +
 +
=== Solution 5 ===
 +
We can just find coordinates of the points.  After drawing a picture, we can see 4 congruent right triangles with sides of <math>15,\ 20,\ 25</math>, namely triangles <math>DSR, OSR, OQP,</math> and <math>BQP</math>.
 +
 +
Let the points of triangle <math>DSR</math> be <math>(0,0)\ (0,20)\ (15,0)</math>. Let point <math>E</math> be on <math>\overline{SR}</math>, such that <math>SE = 16</math> and <math>ER = 9</math>. Triangle <math>DSR</math> can be split into two similar 3-4-5 right triangles, <math>ESD</math> and <math>EDR</math>. By the Pythagorean Theorem, point <math>D</math> is <math>12</math> away from point <math>E</math>. Repeating the process, if we break down triangle <math>DER</math> into two more similar triangles, we find that point <math>E</math> is at <math>(9.6, 7.2)</math>.
 +
 +
By reflecting point <math>D = (0,0)</math> over point <math>E = (9.6, 7.2)</math>, we get point <math>O = (19.2, 14.4)</math>. By reflecting point <math>D</math> over point <math>O</math>, we get point <math>B = (38.4, 28.8)</math>. Thus, the perimeter is equal to <math>(38.4 + 28.8)\times 2 = \frac {672}{5}</math>, making the final answer <math>672+5 = 677</math>.
 +
 +
=== Solution 6 ===
 +
We can just use areas. Let <math>AP = b</math> and <math>AS = a</math>. <math>a^2 + b^2 = 625</math>. Also, we can add up the areas of all 8 right triangles and let that equal the total area of the rectangle, <math>(a+20)(b+15)</math>. This gives <math>3a + 4b = 120</math>. Solving this system of equation gives <math>\frac{44}{5} = a</math>, <math>\frac{117}{5} = b</math>, from which it is straightforward to find the answer, <math>2(a+b+35) \Rightarrow \frac{672}{5}</math>. Thus, <math>m+n = \frac{672}{5}\implies\boxed{677}</math>
 +
 +
=== Solution 7 ===
 +
We will bash with trigonometry.
 +
 +
Firstly, by Pythagoras Theorem, <math>PQ=QR=RS=SP=25</math>. We observe that <math>[PQRS]=\frac{1}{2}\cdot30\cdot40=600</math>. Thus, if we drop an altitude from <math>P</math> to <math>\overline{SR}</math> to point <math>E</math>, it will have length <math>\frac{600}{25}=24</math>. In particular, <math>SE=7</math> since we form a 7-24-25 triangle.
 +
 +
Now, <math>\sin\angle APS=\sin\angle SPB=\sin(\angle SPQ+\angle QPB)=\sin\angle SPQ\cos\angle QPB+\sin\angle QPB\cos\angle SPQ=\sin\angle PSR\cos\angle QPB-\sin\angle QPB\cos\angle PSR=\frac{24}{25}\cdot\frac{15}{25}-\frac{20}{25}\cdot\frac{7}{25}=\frac{44}{125}</math>. Thus, since <math>PS=25</math>, we get that <math>AS=\frac{44}{5}</math>. Now, by the Pythagorean Theorem, <math>AP=\frac{117}{5}</math>.
 +
 +
Using the same idea, <math>\cos\angle RSD=-\cos\angle RSA=-\cos(\angle RSP+\angle PSA)=\sin\angle RSP\sin\angle PSA-\cos\angle RSP\cos\angle PSA=\frac{24}{25}\cdot\frac{117}{125}-\frac{7}{25}\cdot\frac{44}{125}=\frac{4}{5}</math>. Thus, since <math>SR=20</math>.
 +
 +
Now, we can finish. We know <math>AB=\frac{117}{5}+15=\frac{192}{5}</math>. We also know <math>AD=\frac{44}{5}+20=\frac{144}{5}</math>. Thus, our perimeter is <math>\frac{672}{5}\implies\boxed{677}</math>
  
 
== See also ==
 
== See also ==
* [[1991 AIME Problems]]
+
{{AIME box|year=1991|num-b=11|num-a=13}}
 +
 
 +
[[Category:Intermediate Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 22:36, 27 August 2023

Problem

Rhombus $PQRS^{}_{}$ is inscribed in rectangle $ABCD^{}_{}$ so that vertices $P^{}_{}$, $Q^{}_{}$, $R^{}_{}$, and $S^{}_{}$ are interior points on sides $\overline{AB}$, $\overline{BC}$, $\overline{CD}$, and $\overline{DA}$, respectively. It is given that $PB^{}_{}=15$, $BQ^{}_{}=20$, $PR^{}_{}=30$, and $QS^{}_{}=40$. Let $\frac{m}{n}$, in lowest terms, denote the perimeter of $ABCD^{}_{}$. Find $m+n^{}_{}$.

Solution

[asy]defaultpen(fontsize(12)+linewidth(1.3)); pair A=(0,28.8), B=(38.4,28.8), C=(38.4,0), D=(0,0), O, P=(23.4,28.8), Q=(38.4,8.8), R=(15,0), S=(0,20); O=intersectionpoint(A--C,B--D); draw(A--B--C--D--cycle);draw(P--R..Q--S); draw(P--Q--R--S--cycle); label("\(A\)",A,NW);label("\(B\)",B,NE);label("\(C\)",C,SE);label("\(D\)",D,SW); label("\(P\)",P,N);label("\(Q\)",Q,E);label("\(R\)",R,SW);label("\(S\)",S,W); label("\(15\)",B/2+P/2,N);label("\(20\)",B/2+Q/2,E);label("\(O\)",O,SW); [/asy]

Solution 1

Let $O$ be the center of the rhombus. Via parallel sides and alternate interior angles, we see that the opposite triangles are congruent ($\triangle BPQ \cong \triangle DRS$, $\triangle APS \cong \triangle CRQ$). Quickly we realize that $O$ is also the center of the rectangle.

By the Pythagorean Theorem, we can solve for a side of the rhombus; $PQ = \sqrt{15^2 + 20^2} = 25$. Since the diagonals of a rhombus are perpendicular bisectors, we have that $OP = 15, OQ = 20$. Also, $\angle POQ = 90^{\circ}$, so quadrilateral $BPOQ$ is cyclic. By Ptolemy's Theorem, $25 \cdot OB = 20 \cdot 15 + 15 \cdot 20 = 600$.

By similar logic, we have $APOS$ is a cyclic quadrilateral. Let $AP = x$, $AS = y$. The Pythagorean Theorem gives us $x^2 + y^2 = 625\quad \mathrm{(1)}$. Ptolemy’s Theorem gives us $25 \cdot OA = 20x + 15y$. Since the diagonals of a rectangle are equal, $OA = \frac{1}{2}d = OB$, and $20x + 15y = 600\quad \mathrm{(2)}$. Solving for $y$, we get $y = 40 - \frac 43x$. Substituting into $\mathrm{(1)}$,

\begin{eqnarray*}x^2 + \left(40-\frac 43x\right)^2 &=& 625\\ 5x^2 - 192x + 1755 &=& 0\\ x = \frac{192 \pm \sqrt{192^2 - 4 \cdot 5 \cdot 1755}}{10} &=& 15, \frac{117}{5}\end{eqnarray*}

We reject $15$ because then everything degenerates into squares, but the condition that $PR \neq QS$ gives us a contradiction. Thus $x = \frac{117}{5}$, and backwards solving gives $y = \frac{44}5$. The perimeter of $ABCD$ is $2\left(20 + 15 + \frac{117}{5} + \frac{44}5\right) = \frac{672}{5}$, and $m + n = \boxed{677}$.

Solution 2

From above, we have $OB = 24$ and $BD = 48$. Returning to $BPQO,$ note that $\angle PQO\cong \angle PBO \cong ABD.$ Hence, $\triangle ABD \sim \triangle OQP$ by $AA$ similarity. From here, it's clear that \[\frac {AD}{BD} = \frac {OP}{PQ}\implies \frac {AD}{48} = \frac {15}{25}\implies AD = \frac {144}{5}.\] Similarly, \[\frac {AB}{BD} = \frac {IQ}{PQ}\implies \frac {AB}{48} = \frac {20}{25}\implies AB = \frac {192}{5}.\] Therefore, the perimeter of rectangle $ABCD$ is $2(AB + AD) = 2\left(\frac {192}{5} + \frac {144}{5}\right) = \frac {672}{5}.$

Solution 3

The triangles $QOB,OBC$ are isosceles, and similar (because they have $\angle QOB = \angle OBC$).

Hence $\frac {BQ}{OB} = \frac {OB}{BC} \Rightarrow OB^2 = BC \cdot BQ$.

The length of $OB$ could be found easily from the area of $BPQ$:

\[BP \cdot BQ = \frac {OB}{2} \cdot PQ \Rightarrow OB = \frac {2BP\cdot BQ}{PQ} \Rightarrow OB = 24\] \[OB^2 = BC \cdot BQ \Rightarrow 24^2 = (20 + CQ) \cdot 20 \Rightarrow CQ = \frac {44}{5}\]

From the right triangle $CRQ$ we have $RC^2 = 25^2 - \left(\frac {44}{5}\right)^2\Rightarrow RC = \frac {117}{5}$. We could have also defined a similar formula: $OB^2 = BP \cdot BA$, and then we found $AP$, the segment $OB$ is tangent to the circles with diameters $AO,CO$.

The perimeter is $2(PB + BQ + QC + CR) = 2\left(15 + 20 + \frac {44 + 117}{5}\right) = \frac {672}{5}\Rightarrow m+n=677$.

Solution 4

For convenience, let $\angle PQS = \theta$. Since the opposite triangles are congruent we have that $\angle BQR = 3\theta$, and therefore $\angle QRC = 3\theta - 90$. Let $QC = a$, then we have $\sin{(3\theta - 90)} = \frac {a}{25}$, or $- \cos{3\theta} = \frac {a}{25}$. Expanding with the formula $\cos{3\theta} = 4\cos^3{\theta} - 3\cos{\theta}$, and since we have $\cos{\theta} = \frac {4}{5}$, we can solve for $a$. The rest then follows similarily from above.

Solution 5

We can just find coordinates of the points. After drawing a picture, we can see 4 congruent right triangles with sides of $15,\ 20,\ 25$, namely triangles $DSR, OSR, OQP,$ and $BQP$.

Let the points of triangle $DSR$ be $(0,0)\ (0,20)\ (15,0)$. Let point $E$ be on $\overline{SR}$, such that $SE = 16$ and $ER = 9$. Triangle $DSR$ can be split into two similar 3-4-5 right triangles, $ESD$ and $EDR$. By the Pythagorean Theorem, point $D$ is $12$ away from point $E$. Repeating the process, if we break down triangle $DER$ into two more similar triangles, we find that point $E$ is at $(9.6, 7.2)$.

By reflecting point $D = (0,0)$ over point $E = (9.6, 7.2)$, we get point $O = (19.2, 14.4)$. By reflecting point $D$ over point $O$, we get point $B = (38.4, 28.8)$. Thus, the perimeter is equal to $(38.4 + 28.8)\times 2 = \frac {672}{5}$, making the final answer $672+5 = 677$.

Solution 6

We can just use areas. Let $AP = b$ and $AS = a$. $a^2 + b^2 = 625$. Also, we can add up the areas of all 8 right triangles and let that equal the total area of the rectangle, $(a+20)(b+15)$. This gives $3a + 4b = 120$. Solving this system of equation gives $\frac{44}{5} = a$, $\frac{117}{5} = b$, from which it is straightforward to find the answer, $2(a+b+35) \Rightarrow \frac{672}{5}$. Thus, $m+n = \frac{672}{5}\implies\boxed{677}$

Solution 7

We will bash with trigonometry.

Firstly, by Pythagoras Theorem, $PQ=QR=RS=SP=25$. We observe that $[PQRS]=\frac{1}{2}\cdot30\cdot40=600$. Thus, if we drop an altitude from $P$ to $\overline{SR}$ to point $E$, it will have length $\frac{600}{25}=24$. In particular, $SE=7$ since we form a 7-24-25 triangle.

Now, $\sin\angle APS=\sin\angle SPB=\sin(\angle SPQ+\angle QPB)=\sin\angle SPQ\cos\angle QPB+\sin\angle QPB\cos\angle SPQ=\sin\angle PSR\cos\angle QPB-\sin\angle QPB\cos\angle PSR=\frac{24}{25}\cdot\frac{15}{25}-\frac{20}{25}\cdot\frac{7}{25}=\frac{44}{125}$. Thus, since $PS=25$, we get that $AS=\frac{44}{5}$. Now, by the Pythagorean Theorem, $AP=\frac{117}{5}$.

Using the same idea, $\cos\angle RSD=-\cos\angle RSA=-\cos(\angle RSP+\angle PSA)=\sin\angle RSP\sin\angle PSA-\cos\angle RSP\cos\angle PSA=\frac{24}{25}\cdot\frac{117}{125}-\frac{7}{25}\cdot\frac{44}{125}=\frac{4}{5}$. Thus, since $SR=20$.

Now, we can finish. We know $AB=\frac{117}{5}+15=\frac{192}{5}$. We also know $AD=\frac{44}{5}+20=\frac{144}{5}$. Thus, our perimeter is $\frac{672}{5}\implies\boxed{677}$

See also

1991 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png