Difference between revisions of "Mock AIME 6 2006-2007 Problems"
JoetheFixer (talk | contribs) (→Problem 1) |
Bluelinfish (talk | contribs) m (→Problem 14) |
||
(25 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
==Problem 1== | ==Problem 1== | ||
− | Let <math>T</math> be the sum of all positive integers of the form <math>2^r\cdot3^s</math>, where <math>r</math> and <math>s</math> are nonnegative integers that do not exceed <math>4</math>. Find the remainder when <math>T</math> is divided by 1000. | + | Let <math>T</math> be the sum of all positive integers of the form <math>2^r\cdot3^s</math>, where <math>r</math> and <math>s</math> are nonnegative integers that do not exceed <math>4</math>. Find the remainder when <math>T</math> is divided by <math>1000</math>. |
[[Mock AIME 6 2006-2007 Problems/Problem 1|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 1|Solution]] | ||
==Problem 2== | ==Problem 2== | ||
+ | Draw in the diagonals of a regular octagon. What is the sum of all distinct angle measures, in degrees, formed by the intersections of the diagonals in the interior of the octagon? | ||
[[Mock AIME 6 2006-2007 Problems/Problem 2|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 2|Solution]] | ||
==Problem 3== | ==Problem 3== | ||
+ | Alvin, Simon, and Theodore are running around a <math>1000</math>-meter circular track starting at different positions. Alvin is running in the opposite direction of Simon and Theodore. He is also the fastest, running twice as fast as Simon and three times as fast as Theodore. If Alvin meets Simon for the first time after running <math>312</math> meters, and Simon meets Theodore for the first time after running <math>2526</math> meters, how far apart along the track (shorter distance) did Alvin and Theodore meet? | ||
+ | |||
[[Mock AIME 6 2006-2007 Problems/Problem 3|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 3|Solution]] | ||
==Problem 4== | ==Problem 4== | ||
+ | Let <math>R</math> be a set of <math>13</math> points in the plane, no three of which lie on the same line. At most how many ordered triples of points <math>(A,B,C)</math> in <math>R</math> exist such that <math>\angle ABC</math> is obtuse? | ||
+ | |||
[[Mock AIME 6 2006-2007 Problems/Problem 4|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 4|Solution]] | ||
==Problem 5== | ==Problem 5== | ||
+ | Let <math>S(n)</math> be the sum of the squares of the digits of <math>n</math>. How many positive integers <math>n>2007</math> satisfy the inequality <math>n-S(n)\le 2007</math>? | ||
+ | |||
[[Mock AIME 6 2006-2007 Problems/Problem 5|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 5|Solution]] | ||
==Problem 6== | ==Problem 6== | ||
+ | <math>C_1</math> is a circle with radius <math>164</math> and <math>C_2</math> is a circle internally tangent to <math>C_1</math> that passes through the center of <math>C_1</math>. <math>\overline{AB}</math> is a chord in <math>C_1</math> of length <math>320</math> tangent to <math>C_2</math> at <math>D</math> where <math>AD>BD</math>. Given that <math>BD=a-b\sqrt{c}</math> where <math>a,b,c</math> are positive integers and <math>c</math> is not divisible by the square of any prime, what is <math>a+b+c</math>? | ||
[[Mock AIME 6 2006-2007 Problems/Problem 6|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 6|Solution]] | ||
==Problem 7== | ==Problem 7== | ||
+ | Let <math>P_n(x)=1+x+x^2+\cdots+x^n</math> and <math>Q_n(x)=P_1\cdot P_2\cdots P_n</math> for all integers <math>n\ge 1</math>. How many more distinct complex roots does <math>Q_{1004}</math> have than <math>Q_{1003}</math>? | ||
[[Mock AIME 6 2006-2007 Problems/Problem 7|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 7|Solution]] | ||
==Problem 8== | ==Problem 8== | ||
+ | A sequence of positive reals defined by <math>a_0=x</math>, <math>a_1=y</math>, and <math>a_n\cdot a_{n+2}=a_{n+1}</math> for all integers <math>n\ge 0</math>. Given that <math>a_{2007}+a_{2008}=3</math> and <math>a_{2007}\cdot a_{2008}=\frac 13</math>, find <math>x^3+y^3</math>. | ||
+ | |||
[[Mock AIME 6 2006-2007 Problems/Problem 8|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 8|Solution]] | ||
==Problem 9== | ==Problem 9== | ||
+ | <math>ABC</math> is a triangle with integer side lengths. Extend <math>\overline{AC}</math> beyond <math>C</math> to point <math>D</math> such that <math>CD=120</math>. Similarly, extend <math>\overline{CB}</math> beyond <math>B</math> to point <math>E</math> such that <math>BE=112</math> and <math>\overline{BA}</math> beyond <math>A</math> to point <math>F</math> such that <math>AF=104</math>. If triangles <math>CBD</math>, <math>BAE</math>, and <math>ACF</math> all have the same area, what is the minimum possible area of triangle <math>ABC</math>? | ||
+ | |||
[[Mock AIME 6 2006-2007 Problems/Problem 9|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 9|Solution]] | ||
==Problem 10== | ==Problem 10== | ||
+ | Given a point <math>P</math> in the coordinate plane, let <math>T_k(P)</math> be the <math>90^\circ</math> rotation of <math>P</math> around the point <math>(2000-k,k)</math>. Let <math>P_0</math> be the point <math>(2007,0)</math> and <math>P_{n+1}=T_n(P_n)</math> for all integers <math>n\ge 0</math>. If <math>P_m</math> has a <math>y</math>-coordinate of <math>433</math>, what is <math>m</math>? | ||
[[Mock AIME 6 2006-2007 Problems/Problem 10|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 10|Solution]] | ||
==Problem 11== | ==Problem 11== | ||
+ | Each face of an octahedron is randomly colored blue or red. A caterpillar is on a vertex of the octahedron and wants to get to the opposite vertex by traversing the edges. The probability that it can do so without traveling along an edge that is shared by two faces of the same color is <math>\frac mn</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
+ | |||
[[Mock AIME 6 2006-2007 Problems/Problem 11|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 11|Solution]] | ||
==Problem 12== | ==Problem 12== | ||
+ | Let <math>x_k</math> be the largest positive rational solution <math>x</math> to the equation <math>(2007-x)(x+2007^{-k})^k=1</math> for all integers <math>k\ge 2</math>. For each <math>k</math>, let <math>x_k=\frac{a_k}{b_k}</math>, where <math>a_k</math> and <math>b_k</math> are relatively prime positive integers. If <cmath>S=\sum_{k=2}^{2007} (2007b_k-a_k),</cmath> what is the remainder when <math>S</math> is divided by <math>1000</math>? | ||
[[Mock AIME 6 2006-2007 Problems/Problem 12|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 12|Solution]] | ||
==Problem 13== | ==Problem 13== | ||
+ | Consider two circles of different sizes that do not intersect. The smaller circle has center <math>O</math>. Label the intersection of their common external tangents <math>P</math>. A common internal tangent interesects the common external tangents at points <math>A</math> and <math>B</math>. Given that the radius of the larger circle is <math>11</math>, <math>PO=3</math>, and <math>AB=20\sqrt{2}</math>, what is the square of the area of triangle <math>PBA</math>? | ||
+ | |||
[[Mock AIME 6 2006-2007 Problems/Problem 13|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 13|Solution]] | ||
==Problem 14== | ==Problem 14== | ||
+ | A rational <math>\frac{1}{k}</math>, where <math>k</math> is a positive integer, is said to be <math>\textit{n-unsound}</math> if its base <math>N</math> representation terminates. Let <math>S_n</math> be the set of all <math>\textit{n-unsound}</math> rationals. The sum of all the elements in the union set <math>S_2\cup S_3\cup\cdots\cup S_{14}</math> is <math>\frac mn</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
+ | |||
[[Mock AIME 6 2006-2007 Problems/Problem 14|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 14|Solution]] | ||
==Problem 15== | ==Problem 15== | ||
+ | For any finite sequence of positive integers <math>A=(a_1,a_2,\cdots,a_n)</math>, let <math>f(A)</math> be the sequence of the differences between consecutive terms of <math>A</math>. i.e. <math>f(A)=(a_2-a_1,a_3-a_2,\cdots,a_n-a_{n-1})</math>. Let <math>F^k(A)</math> denote <math>F</math> applied <math>k</math> times to <math>A</math>. If all of the sequences <math>A, f(A), f^2(A),\cdots, f^{n-2}(A)</math> are strictly increasing and the only term of <math>f^{n01}(A)</math> is <math>1</math>, we call the sequence <math>A</math> <math>\textit{superpositive}</math>. How many sequences <math>A</math> with at least two terms and no terms exceeding <math>18</math> are <math>\textit{superpositive}</math>? | ||
[[Mock AIME 6 2006-2007 Problems/Problem 15|Solution]] | [[Mock AIME 6 2006-2007 Problems/Problem 15|Solution]] |
Latest revision as of 20:04, 7 December 2018
Contents
Problem 1
Let be the sum of all positive integers of the form , where and are nonnegative integers that do not exceed . Find the remainder when is divided by .
Problem 2
Draw in the diagonals of a regular octagon. What is the sum of all distinct angle measures, in degrees, formed by the intersections of the diagonals in the interior of the octagon?
Problem 3
Alvin, Simon, and Theodore are running around a -meter circular track starting at different positions. Alvin is running in the opposite direction of Simon and Theodore. He is also the fastest, running twice as fast as Simon and three times as fast as Theodore. If Alvin meets Simon for the first time after running meters, and Simon meets Theodore for the first time after running meters, how far apart along the track (shorter distance) did Alvin and Theodore meet?
Problem 4
Let be a set of points in the plane, no three of which lie on the same line. At most how many ordered triples of points in exist such that is obtuse?
Problem 5
Let be the sum of the squares of the digits of . How many positive integers satisfy the inequality ?
Problem 6
is a circle with radius and is a circle internally tangent to that passes through the center of . is a chord in of length tangent to at where . Given that where are positive integers and is not divisible by the square of any prime, what is ?
Problem 7
Let and for all integers . How many more distinct complex roots does have than ?
Problem 8
A sequence of positive reals defined by , , and for all integers . Given that and , find .
Problem 9
is a triangle with integer side lengths. Extend beyond to point such that . Similarly, extend beyond to point such that and beyond to point such that . If triangles , , and all have the same area, what is the minimum possible area of triangle ?
Problem 10
Given a point in the coordinate plane, let be the rotation of around the point . Let be the point and for all integers . If has a -coordinate of , what is ?
Problem 11
Each face of an octahedron is randomly colored blue or red. A caterpillar is on a vertex of the octahedron and wants to get to the opposite vertex by traversing the edges. The probability that it can do so without traveling along an edge that is shared by two faces of the same color is , where and are relatively prime positive integers. Find .
Problem 12
Let be the largest positive rational solution to the equation for all integers . For each , let , where and are relatively prime positive integers. If what is the remainder when is divided by ?
Problem 13
Consider two circles of different sizes that do not intersect. The smaller circle has center . Label the intersection of their common external tangents . A common internal tangent interesects the common external tangents at points and . Given that the radius of the larger circle is , , and , what is the square of the area of triangle ?
Problem 14
A rational , where is a positive integer, is said to be if its base representation terminates. Let be the set of all rationals. The sum of all the elements in the union set is , where and are relatively prime positive integers. Find .
Problem 15
For any finite sequence of positive integers , let be the sequence of the differences between consecutive terms of . i.e. . Let denote applied times to . If all of the sequences are strictly increasing and the only term of is , we call the sequence . How many sequences with at least two terms and no terms exceeding are ?