Difference between revisions of "Angle Addition Formulas (Trigonometry)"
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <center><asy> | |
+ | real a,b,c; | ||
+ | a=0.4924; | ||
+ | b=0.5467; | ||
+ | c=a+b; | ||
+ | pair A,B,C,D,E,F; | ||
+ | A=(0,0); | ||
+ | D=(cos(c),sin(c)); | ||
+ | B=(cos(a)*cos(b),0); | ||
+ | C=(cos(a)*cos(b),sin(a)*cos(b)); | ||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(A--C); | ||
+ | E=foot(D,A,B); | ||
+ | draw(D--E); | ||
+ | F=foot(C,D,E); | ||
+ | draw(C--F); | ||
+ | draw(anglemark(B,A,C,4)); | ||
+ | draw(anglemark(C,A,D,5.5)); | ||
+ | label("$\alpha$", A ,7*dir(a*30)); | ||
+ | label("$\beta$", A ,9*dir(b*45+ a*30)); | ||
+ | label("$A$",A,SW); | ||
+ | label("$B$",B,SE); | ||
+ | label("$C$",C,E); | ||
+ | label("$D$",D,N); | ||
+ | label("$E$",E,S); | ||
+ | label("$F$",F,W); | ||
+ | draw(rightanglemark(F,E,A,1)); | ||
+ | draw(rightanglemark(C,F,D,1)); | ||
+ | </asy></center> | ||
+ | |||
+ | ===Sine Angle Addition=== | ||
+ | We let <math>\angle BAC=\alpha</math>, <math>\angle CAD=\beta</math>, <math>E</math> the foot of the altitude from <math>D</math> to <math>AB</math> and <math>F</math> the foot of the altitude from <math>C</math> to <math>DE</math>. We let <math>AD=1</math>. Then, we have that <math>CD=\sin\beta</math> and <math>AC=\cos\beta</math>. Furthermore, we see that <math>\angle CDF=\angle CAB=\alpha</math>. Thus, we see that <math>FE=BC=AC\sin\alpha=\cos\beta\sin\alpha</math> and <math>DF=CD\cos\alpha=\cos\alpha\sin\beta</math>. Thus, we see that <math>\sin(\alpha+\beta)=DE=DF+FE=\cos\beta\sin\alpha+\sin\beta\cos\alpha</math>, giving<cmath>\sin(\alpha+\beta)=\sin\alpha\cos\beta+\sin\beta\cos\alpha.</cmath> | ||
+ | |||
+ | ===Cosine Angle Addition=== | ||
+ | We let <math>\angle BAC=\alpha</math>, <math>\angle CAD=\beta</math>, <math>E</math> the foot of the altitude from <math>D</math> to <math>AB</math> and <math>F</math> the foot of the altitude from <math>C</math> to <math>DE</math>. We let <math>AD=1</math>. Then, we have that <math>CD=\sin\beta</math> and <math>AC=\cos\beta</math>. Furthermore, we see that <math>\angle CDF=\angle CAB=\alpha</math>. Thus, we see that <math>AB=AC\cos\alpha=\cos\alpha\cos\beta</math> and <math>BE=CF=CD\sin\alpha=\sin\beta\sin\alpha</math>. Thus, we see that <math>\sin(\alpha+\beta)=AE=AB-BE=\cos\beta\cos\alpha-\sin\beta\sin\alpha</math>, giving<cmath>\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\beta\sin\alpha.</cmath> | ||
+ | |||
+ | ===Tangent Angle Addition=== | ||
+ | We have already found <math>AE</math> and <math>DE</math> above; thus we get <math>\tan(\alpha+\beta)=\frac{\sin\alpha\cos\beta+\sin\beta\cos\alpha}{\cos\alpha\cos\beta-\sin\alpha\sin\beta}</math>. Dividing numerator and denominator by <math>\cos\alpha\cos\beta</math>, we get<cmath>\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}.</cmath> |
Latest revision as of 18:24, 2 February 2020
Sine Angle Addition
We let , , the foot of the altitude from to and the foot of the altitude from to . We let . Then, we have that and . Furthermore, we see that . Thus, we see that and . Thus, we see that , giving
Cosine Angle Addition
We let , , the foot of the altitude from to and the foot of the altitude from to . We let . Then, we have that and . Furthermore, we see that . Thus, we see that and . Thus, we see that , giving
Tangent Angle Addition
We have already found and above; thus we get . Dividing numerator and denominator by , we get