Difference between revisions of "1963 AHSME Problems"

m (See also)
(See also)
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{AHSC 40 Problems
 +
|year = 1963
 +
}}
 
== Problem 1==
 
== Problem 1==
  
 
Which one of the following points is not on the graph of <math>y=\dfrac{x}{x+1}</math>?
 
Which one of the following points is not on the graph of <math>y=\dfrac{x}{x+1}</math>?
  
<math>\textbf{(A)}\(0,0)\qquad
+
<math>\textbf{(A)}\ (0,0)\qquad
 
\textbf{(B)}\ \left(-\frac{1}{2},-1\right)\qquad
 
\textbf{(B)}\ \left(-\frac{1}{2},-1\right)\qquad
 
\textbf{(C)}\ \left(\frac{1}{2},\frac{1}{3}\right)\qquad
 
\textbf{(C)}\ \left(\frac{1}{2},\frac{1}{3}\right)\qquad
Line 126: Line 129:
 
[[1963 AHSME Problems/Problem 10|Solution]]
 
[[1963 AHSME Problems/Problem 10|Solution]]
  
== Problem 12==
+
== Problem 11==
  
 
The arithmetic mean of a set of <math>50</math> numbers is <math>38</math>. If two numbers of the set, namely <math>45</math> and <math>55</math>, are discarded,  
 
The arithmetic mean of a set of <math>50</math> numbers is <math>38</math>. If two numbers of the set, namely <math>45</math> and <math>55</math>, are discarded,  
Line 497: Line 500:
 
== Problem 36==
 
== Problem 36==
  
A person starting with <math>\textdollar 64</math> and making <math>6</math> bets, wins three times and loses three times,  
+
A person starting with <math>\$64</math> and making <math>6</math> bets, wins three times and loses three times,  
 
the wins and losses occurring in random order. The chance for a win is equal to the chance for a loss.  
 
the wins and losses occurring in random order. The chance for a win is equal to the chance for a loss.  
 
If each wager is for half the money remaining at the time of the bet, then the final result is:
 
If each wager is for half the money remaining at the time of the bet, then the final result is:
  
<math>\text{(A) a loss of }\textdollar 27} \qquad
+
<math>\textbf{(A)}\text{ a loss of }\$ 27 \qquad
\text{(B) a gain of }\textdollar 27} \qquad
+
\textbf{(B)}\text{ a gain of }\$ 27 \qquad
\text{(C) a loss of }\textdollar 37} \qquad \\
+
\textbf{(C)}\text{ a loss of }\$ 37 \qquad \\
\text{(D) neither a gain nor a loss}\qquad \\
+
\textbf{(D)}\text{ neither a gain nor a loss}\qquad \\
\text{(E) a gain or a loss depending upon the order in which the wins and losses occur} </math>
+
\textbf{(E)}\text{ a gain or a loss depending upon the order in which the wins and losses occur} </math>
 
    
 
    
  
Line 602: Line 605:
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
  
{{AHSME box|year=1963|before=[[1962 AHSME]]|after=[[1964 AHSME]]}}   
+
{{AHSME 40p box|year=1963|before=[[1962 AHSME|1962 AHSC]]|after=[[1964 AHSME|1964 AHSC]]}}   
  
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 13:17, 20 February 2020

1963 AHSC (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 40-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive ? points for each correct answer, ? points for each problem left unanswered, and ? points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers.
  4. Figures are not necessarily drawn to scale.
  5. You will have ? minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Problem 1

Which one of the following points is not on the graph of $y=\dfrac{x}{x+1}$?

$\textbf{(A)}\ (0,0)\qquad \textbf{(B)}\ \left(-\frac{1}{2},-1\right)\qquad \textbf{(C)}\ \left(\frac{1}{2},\frac{1}{3}\right)\qquad \textbf{(D)}\ (-1,1)\qquad \textbf{(E)}\ (-2,2)$

Solution

Problem 2

let $n=x-y^{x-y}$. Find $n$ when $x=2$ and $y=-2$.

$\textbf{(A)}\ -14 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ 256$

Solution

Problem 3

If the reciprocal of $x+1$ is $x-1$, then $x$ equals:

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ -1\qquad \textbf{(D)}\ \pm 1\qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 4

For what value(s) of $k$ does the pair of equations $y=x^2$ and $y=3x+k$ have two identical solutions?

$\textbf{(A)}\ \frac{4}{9}\qquad \textbf{(B)}\ -\frac{4}{9}\qquad \textbf{(C)}\ \frac{9}{4}\qquad \textbf{(D)}\ -\frac{9}{4}\qquad \textbf{(E)}\ \pm\frac{9}{4}$

Solution

Problem 5

If $x$ and $\log_{10} x$ are real numbers and $\log_{10} x<0$, then:

$\textbf{(A)}\ x<0 \qquad \textbf{(B)}\ -1<x<1 \qquad \textbf{(C)}\ 0<x\le 1 \\ \textbf{(D)}\ -1<x<0 \qquad \textbf{(E)}\ 0<x<1$

Solution

Problem 6

$\triangle BAD$ is right-angled at $B$. On $AD$ there is a point $C$ for which $AC=CD$ and $AB=BC$. The magnitude of $\angle DAB$ is:

$\textbf{(A)}\ 67\tfrac{1}{2}^{\circ}\qquad \textbf{(B)}\ 60^{\circ}\qquad \textbf{(C)}\ 45^{\circ}\qquad \textbf{(D)}\ 30^{\circ}\qquad \textbf{(E)}\ 22\tfrac{1}{2}^{\circ}$

Solution

Problem 7

Given the four equations:

$\textbf{(1)}\ 3y-2x=12 \qquad\textbf{(2)}\ -2x-3y=10 \qquad\textbf{(3)}\ 3y+2x=12 \qquad\textbf{(4)}\ 2y+3x=10$

The pair representing the perpendicular lines is:


$\textbf{(A)}\ \text{(1) and (4)}\qquad \textbf{(B)}\ \text{(1) and (3)}\qquad \textbf{(C)}\ \text{(1) and (2)}\qquad \textbf{(D)}\ \text{(2) and (4)}\qquad \textbf{(E)}\ \text{(2) and (3)}$

Solution

Problem 8

The smallest positive integer $x$ for which $1260x=N^3$, where $N$ is an integer, is:


$\textbf{(A)}\ 1050 \qquad \textbf{(B)}\ 1260 \qquad \textbf{(C)}\ 1260^2 \qquad \textbf{(D)}\ 7350 \qquad \textbf{(E)}\ 44100$

Solution

Problem 9

In the expansion of $\left(a-\dfrac{1}{\sqrt{a}}\right)^7$ the coefficient of $a^{-\dfrac{1}{2}}$ is:

$\textbf{(A)}\ -7 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ -21 \qquad \textbf{(D)}\ 21 \qquad \textbf{(E)}\ 35$

Solution

Problem 10

Point $P$ is taken interior to a square with side-length $a$ and such that is it equally distant from two consecutive vertices and from the side opposite these vertices. If $d$ represents the common distance, then $d$ equals:

$\textbf{(A)}\ \frac{3a}{5}\qquad \textbf{(B)}\ \frac{5a}{8}\qquad \textbf{(C)}\ \frac{3a}{8}\qquad \textbf{(D)}\ \frac{a\sqrt{2}}{2}\qquad \textbf{(E)}\ \frac{a}{2}$

Solution

Problem 11

The arithmetic mean of a set of $50$ numbers is $38$. If two numbers of the set, namely $45$ and $55$, are discarded, the arithmetic mean of the remaining set of numbers is:

$\textbf{(A)}\ 38.5 \qquad \textbf{(B)}\ 37.5 \qquad \textbf{(C)}\ 37 \qquad \textbf{(D)}\ 36.5 \qquad \textbf{(E)}\ 36$

Solution

Problem 12

Three vertices of parallelogram $PQRS$ are $P(-3,-2), Q(1,-5), R(9,1)$ with $P$ and $R$ diagonally opposite. The sum of the coordinates of vertex $S$ is:

$\textbf{(A)}\ 13 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 11 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 9$

Solution

Problem 13

If $2^a+2^b=3^c+3^d$, the number of integers $a,b,c,d$ which can possibly be negative, is, at most:

$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ 0$

Solution

Problem 14

Given the equations $x^2+kx+6=0$ and $x^2-kx+6=0$. If, when the roots of the equation are suitably listed, each root of the second equation is $5$ more than the corresponding root of the first equation, then $k$ equals:

$\textbf{(A)}\ 5 \qquad \textbf{(B)}\ -5 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ -7 \qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 15

A circle is inscribed in an equilateral triangle, and a square is inscribed in the circle. The ratio of the area of the triangle to the area of the square is:

$\textbf{(A)}\ \sqrt{3}:1\qquad \textbf{(B)}\ \sqrt{3}:\sqrt{2}\qquad \textbf{(C)}\ 3\sqrt{3}:2\qquad \textbf{(D)}\ 3:\sqrt{2}\qquad \textbf{(E)}\ 3:2\sqrt{2}$

Solution

Problem 16

Three numbers $a,b,c$, none zero, form an arithmetic progression. Increasing $a$ by $1$ or increasing $c$ by $2$ results in a geometric progression. Then $b$ equals:

$\textbf{(A)}\ 16 \qquad \textbf{(B)}\ 14 \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 8$

Solution

Problem 17

The expression $\dfrac{\dfrac{a}{a+y}+\dfrac{y}{a-y}}{\dfrac{y}{a+y}-\dfrac{a}{a-y}}$, $a$ real, $a\neq 0$, has the value $-1$ for:

$\textbf{(A)}\ \text{all but two real values of }y \qquad \\ \textbf{(B)}\ \text{only two real values of }y \qquad \\ \textbf{(C)}\ \text{all real values of }y\qquad \\ \textbf{(D)}\ \text{only one real value of }y\qquad \\ \textbf{(E)}\ \text{no real values of }y$

Solution

Problem 18

Chord $EF$ is the perpendicular bisector of chord $BC$, intersecting it in $M$. Between $B$ and $M$ point $U$ is taken, and $EU$ extended meets the circle in $A$. Then, for any selection of $U$, as described, $\triangle EUM$ is similar to:

[asy] pair B = (-0.866, -0.5); pair C = (0.866, -0.5); pair E = (0, -1); pair F = (0, 1); pair M = midpoint(B--C); pair A = (-0.99, -0.141); pair U = intersectionpoints(A--E, B--C)[0]; draw(B--C); draw(F--E--A); draw(unitcircle); label("$B$", B, SW); label("$C$", C, SE); label("$A$", A, W); label("$E$", E, S); label("$U$", U, NE); label("$M$", M, NE); label("$F$", F, N); //Credit to MSTang for the asymptote[/asy]


$\textbf{(A)}\ \triangle EFA \qquad \textbf{(B)}\ \triangle EFC \qquad \textbf{(C)}\ \triangle ABM \qquad \textbf{(D)}\ \triangle ABU \qquad \textbf{(E)}\ \triangle FMC$

Solution

Problem 19

In counting $n$ colored balls, some red and some black, it was found that $49$ of the first $50$ counted were red. Thereafter, $7$ out of every $8$ counted were red. If, in all, $90$ % or more of the balls counted were red, the maximum value of $n$ is:

$\textbf{(A)}\ 225 \qquad \textbf{(B)}\ 210 \qquad \textbf{(C)}\ 200 \qquad \textbf{(D)}\ 180 \qquad \textbf{(E)}\ 175$

Solution

Problem 20

Two men at points $R$ and $S$, $76$ miles apart, set out at the same time to walk towards each other. The man at $R$ walks uniformly at the rate of $4\tfrac{1}{2}$ miles per hour; the man at $S$ walks at the constant rate of $3\tfrac{1}{4}$ miles per hour for the first hour, at $3\tfrac{3}{4}$ miles per hour for the second hour, and so on, in arithmetic progression. If the men meet $x$ miles nearer $R$ than $S$ in an integral number of hours, then $x$ is:

$\textbf{(A)}\ 10 \qquad \textbf{(B)}\ 8 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 2$

Solution

Problem 21

The expression $x^2-y^2-z^2+2yz+x+y-z$ has:

$\textbf{(A)}\ \text{no linear factor with integer coefficients and integer exponents} \qquad \\ \textbf{(B)}\ \text{the factor }-x+y+z \qquad \\ \textbf{(C)}\ \text{the factor }x-y-z+1 \qquad \\ \textbf{(D)}\ \text{the factor }x+y-z+1 \qquad \\ \textbf{(E)}\ \text{the factor }x-y+z+1$

Solution

Problem 22

Acute-angled $\triangle ABC$ is inscribed in a circle with center at $O$; $\stackrel \frown {AB} = 120$ and $\stackrel \frown {BC} = 72$. $A$ point $E$ is taken in minor arc $AC$ such that $OE$ is perpendicular to $AC$. Then the ratio of the magnitudes of $\angle OBE$ and $\angle BAC$ is:

$\textbf{(A)}\ \frac{5}{18}\qquad \textbf{(B)}\ \frac{2}{9}\qquad \textbf{(C)}\ \frac{1}{4}\qquad \textbf{(D)}\ \frac{1}{3}\qquad \textbf{(E)}\ \frac{4}{9}$

Solution

Problem 23

A gives $B$ as many cents as $B$ has and $C$ as many cents as $C$ has. Similarly, $B$ then gives $A$ and $C$ as many cents as each then has. $C$, similarly, then gives $A$ and $B$ as many cents as each then has. If each finally has $16$ cents, with how many cents does $A$ start?

$\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 26\qquad \textbf{(C)}\ 28 \qquad \textbf{(D)}\ 30 \qquad \textbf{(E)}\ 32$

Solution

Problem 24

Consider equations of the form $x^2 + bx + c = 0$. How many such equations have real roots and have coefficients $b$ and $c$ selected from the set of integers $\{1,2,3, 4, 5,6\}$?

$\textbf{(A)}\ 20 \qquad \textbf{(B)}\ 19 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 17 \qquad \textbf{(E)}\ 16$

Solution

Problem 25

Point $F$ is taken in side $AD$ of square $ABCD$. At $C$ a perpendicular is drawn to $CF$, meeting $AB$ extended at $E$. The area of $ABCD$ is $256$ square inches and the area of $\triangle CEF$ is $200$ square inches. Then the number of inches in $BE$ is:

[asy] size(6cm); pair A = (0, 0), B = (1, 0), C = (1, 1), D = (0, 1), E = (1.3, 0), F = (0, 0.7); draw(A--B--C--D--cycle); draw(F--C--E--B); label("$A$", A, SW); label("$B$", B, S); label("$C$", C, N); label("$D$", D, NW); label("$E$", E, SE); label("$F$", F, W); //Credit to MSTang for the asymptote[/asy]

$\textbf{(A)}\ 12 \qquad \textbf{(B)}\ 14 \qquad \textbf{(C)}\ 15 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 20$

Solution

Problem 26

Version 1 Consider the statements:

$\textbf{(1)}\ p\text{ }\wedge\sim q\wedge r\qquad\textbf{(2)}\ \sim p\text{ }\wedge\sim q\wedge r\qquad\textbf{(3)}\ p\text{ }\wedge\sim q\text{ }\wedge\sim r\qquad\textbf{(4)}\ \sim p\text{ }\wedge q\text{ }\wedge r$

where $p,q$, and $r$ are propositions. How many of these imply the truth of $(p\rightarrow q)\rightarrow r$?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

Version 2 Consider the statements (1) $p$ and $r$ are true and $q$ is false (2) $r$ is true and $p$ and $q$ are false (3) $p$ is true and $q$ and $r$ are false (4) $q$ and $r$ are true and $p$ is false. How many of these imply the truth of the statement "$r$ is implied by the statement that $p$ implies $q$"?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

Solution

Problem 27

Six straight lines are drawn in a plane with no two parallel and no three concurrent. The number of regions into which they divide the plane is:

$\textbf{(A)}\ 16 \qquad \textbf{(B)}\ 20\qquad \textbf{(C)}\ 22 \qquad \textbf{(D)}\ 24 \qquad \textbf{(E)}\ 26$

Solution

Problem 28

Given the equation $3x^2 - 4x + k = 0$ with real roots. The value of $k$ for which the product of the roots of the equation is a maximum is:

$\textbf{(A)}\ \frac{16}{9}\qquad \textbf{(B)}\ \frac{16}{3}\qquad \textbf{(C)}\ \frac{4}{9}\qquad \textbf{(D)}\ \frac{4}{3}\qquad \textbf{(E)}\ -\frac{4}{3}$

Solution

Problem 29

A particle projected vertically upward reaches, at the end of $t$ seconds, an elevation of $s$ feet where $s = 160 t - 16t^2$. The highest elevation is:

$\textbf{(A)}\ 800 \qquad \textbf{(B)}\ 640\qquad \textbf{(C)}\ 400 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 160$

Solution

Problem 30

Let $F=\log\dfrac{1+x}{1-x}$. Find a new function $G$ by replacing each $x$ in $F$ by $\dfrac{3x+x^3}{1+3x^2}$, and simplify. The simplified expression $G$ is equal to:

$\textbf{(A)}\ -F \qquad \textbf{(B)}\ F\qquad \textbf{(C)}\ 3F \qquad \textbf{(D)}\ F^3 \qquad \textbf{(E)}\ F^3-F$

Solution

Problem 31

The number of solutions in positive integers of $2x+3y=763$ is:

$\textbf{(A)}\ 255 \qquad \textbf{(B)}\ 254\qquad \textbf{(C)}\ 128 \qquad \textbf{(D)}\ 127 \qquad \textbf{(E)}\ 0$

Solution

Problem 32

The dimensions of a rectangle $R$ are $a$ and $b$, $a < b$. It is required to obtain a rectangle with dimensions $x$ and $y$, $x < a, y < a$, so that its perimeter is one-third that of $R$, and its area is one-third that of $R$. The number of such (different) rectangles is:

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ \infty$

Solution

Problem 33

Given the line $y = \dfrac{3}{4}x + 6$ and a line $L$ parallel to the given line and $4$ units from it. A possible equation for $L$ is:

$\textbf{(A)}\ y =\frac{3}{4}x+1\qquad \textbf{(B)}\ y =\frac{3}{4}x\qquad \textbf{(C)}\ y =\frac{3}{4}x-\frac{2}{3}\qquad  \\ \textbf{(D)}\ y = \dfrac{3}{4}x -1 \qquad \textbf{(E)}\ y = \dfrac{3}{4}x + 2$

Solution

Problem 34

In $\triangle ABC$, side $a = \sqrt{3}$, side $b = \sqrt{3}$, and side $c > 3$. Let $x$ be the largest number such that the magnitude, in degrees, of the angle opposite side $c$ exceeds $x$. Then $x$ equals:

$\textbf{(A)}\ 150^{\circ} \qquad \textbf{(B)}\ 120^{\circ}\qquad \textbf{(C)}\ 105^{\circ} \qquad \textbf{(D)}\ 90^{\circ} \qquad \textbf{(E)}\ 60^{\circ}$

Solution

Problem 35

The lengths of the sides of a triangle are integers, and its area is also an integer. One side is $21$ and the perimeter is $48$. The shortest side is:

$\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 10\qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 14 \qquad \textbf{(E)}\ 16$

Solution

Problem 36

A person starting with $$64$ and making $6$ bets, wins three times and loses three times, the wins and losses occurring in random order. The chance for a win is equal to the chance for a loss. If each wager is for half the money remaining at the time of the bet, then the final result is:

$\textbf{(A)}\text{ a loss of }$ 27 \qquad \textbf{(B)}\text{ a gain of }$ 27 \qquad \textbf{(C)}\text{ a loss of }$ 37 \qquad \\ \textbf{(D)}\text{ neither a gain nor a loss}\qquad \\ \textbf{(E)}\text{ a gain or a loss depending upon the order in which the wins and losses occur}$


Solution

Problem 37

Given points $P_1, P_2,\cdots,P_7$ on a straight line, in the order stated (not necessarily evenly spaced). Let $P$ be an arbitrarily selected point on the line and let $s$ be the sum of the undirected lengths $PP_1, PP_2, \cdots , PP_7$. Then $s$ is smallest if and only if the point $P$ is:

$\textbf{(A)}\ \text{midway between }P_1\text{ and }P_7\qquad \\ \textbf{(B)}\ \text{midway between }P_2\text{ and }P_6\qquad \\ \textbf{(C)}\ \text{midway between }P_3\text{ and }P_5\qquad \\ \textbf{(D)}\ \text{at }P_4 \qquad \textbf{(E)}\ \text{at }P_1$

Solution

Problem 38

Point $F$ is taken on the extension of side $AD$ of parallelogram $ABCD$. $BF$ intersects diagonal $AC$ at $E$ and side $DC$ at $G$. If $EF = 32$ and $GF = 24$, then $BE$ equals:

[asy] size(7cm); pair A = (0, 0), B = (7, 0), C = (10, 5), D = (3, 5), F = (5.7, 9.5); pair G = intersectionpoints(B--F, D--C)[0]; pair E = intersectionpoints(A--C, B--F)[0]; draw(A--D--C--B--cycle); draw(A--C); draw(D--F--B); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$F$", F, N); label("$G$", G, NE); label("$E$", E, SE); //Credit to MSTang for the asymptote[/asy]

$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 12 \qquad \textbf{(E)}\ 16$

Solution

Problem 39

In $\triangle ABC$ lines $CE$ and $AD$ are drawn so that $\dfrac{CD}{DB}=\dfrac{3}{1}$ and $\dfrac{AE}{EB}=\dfrac{3}{2}$. Let $r=\dfrac{CP}{PE}$ where $P$ is the intersection point of $CE$ and $AD$. Then $r$ equals:

[asy] size(8cm); pair A = (0, 0), B = (9, 0), C = (3, 6); pair D = (7.5, 1.5), E = (6.5, 0); pair P = intersectionpoints(A--D, C--E)[0]; draw(A--B--C--cycle); draw(A--D); draw(C--E); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$D$", D, NE); label("$E$", E, S); label("$P$", P, S); //Credit to MSTang for the asymptote[/asy]


$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ \dfrac{3}{2}\qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ \dfrac{5}{2}$

Solution

Problem 40

If $x$ is a number satisfying the equation $\sqrt[3]{x+9}-\sqrt[3]{x-9}=3$, then $x^2$ is between:

$\textbf{(A)}\ 55\text{ and }65\qquad \textbf{(B)}\ 65\text{ and }75\qquad \textbf{(C)}\ 75\text{ and }85\qquad \textbf{(D)}\ 85\text{ and }95\qquad \textbf{(E)}\ 95\text{ and }105$

Solution

See also

1963 AHSC (ProblemsAnswer KeyResources)
Preceded by
1962 AHSC
Followed by
1964 AHSC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png