Difference between revisions of "2014 UNCO Math Contest II Problems/Problem 6"
m |
(→Solution) |
||
(One intermediate revision by the same user not shown) | |||
Line 15: | Line 15: | ||
== Solution == | == Solution == | ||
+ | (a) <math>11</math> (b) <math>76</math> | ||
== See also == | == See also == |
Latest revision as of 02:31, 13 January 2019
Problem
(a) Alice falls down a rabbit hole and finds herself in a circular room with five doors of five different sizes evenly spaced around the circumference. Alice tries keys in some or all of the doors. She must leave no pair of adjacent doors untried. How many different sets of doors left untried does Alice have to choose from? For example, Alice might try doors , , and and leave doors and untried. There are no adjacent doors in the set of untried doors. Note: doors and are adjacent.
(b) Suppose the circular room in which Alice finds herself has nine doors of nine different sizes evenly spaced around the circumference. Again, she is to try keys in some or all of the doors and must leave no pair of adjacent doors untried. Now how many different sets of doors left untried does Alice have to choose from?
Solution
(a) (b)
See also
2014 UNCO Math Contest II (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 | ||
All UNCO Math Contest Problems and Solutions |