Difference between revisions of "2014 UNCO Math Contest II Problems/Problem 3"

m (moved 2014 UNC Math Contest II Problems/Problem 3 to 2014 UNCO Math Contest II Problems/Problem 3: disambiguation of University of Northern Colorado with University of North Carolina)
(solution)
 
(One intermediate revision by one other user not shown)
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
 +
 +
Solve for each variable.
 +
 +
<cmath>\frac{1}{1+\frac{1}{x}}=2</cmath> <cmath>1 = 2 + \frac{2}{x}</cmath> <cmath>-1 = \frac{2}{x}</cmath> <cmath>\boxed{x=-2}</cmath>
 +
 +
Now for <math>y</math>:
 +
 +
<cmath>\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{y}}}}=2</cmath>
 +
 +
<cmath>1 = 2 + \frac{2}{1+\frac{1}{1+\frac{1}{y}}}</cmath>
 +
 +
<cmath>-1 = + \frac{2}{1+\frac{1}{1+\frac{1}{y}}}</cmath>
 +
 +
<cmath>-1 - \frac{1}{1+\frac{1}{y}} = 2</cmath>
 +
 +
<cmath>\frac{1}{1+\frac{1}{y}} = -3</cmath>
 +
 +
<cmath>-4 = \frac{3}{y}</cmath>
 +
 +
<cmath>\boxed{y = -\frac{3}{4}}</cmath>
 +
 +
~IYN~
  
 
== See also ==
 
== See also ==
{{UNC Math Contest box|year=2014|n=II|num-b=2|num-a=4}}
+
{{UNCO Math Contest box|year=2014|n=II|num-b=2|num-a=4}}
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Latest revision as of 20:36, 13 March 2017

Problem

Find $x$ and $y$ if $\frac{1}{1+\frac{1}{x}}=2$ and $\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{y}}}}=2$


Solution

Solve for each variable.

\[\frac{1}{1+\frac{1}{x}}=2\] \[1 = 2 + \frac{2}{x}\] \[-1 = \frac{2}{x}\] \[\boxed{x=-2}\]

Now for $y$:

\[\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{y}}}}=2\]

\[1 = 2 + \frac{2}{1+\frac{1}{1+\frac{1}{y}}}\]

\[-1 = + \frac{2}{1+\frac{1}{1+\frac{1}{y}}}\]

\[-1 - \frac{1}{1+\frac{1}{y}} = 2\]

\[\frac{1}{1+\frac{1}{y}} = -3\]

\[-4 = \frac{3}{y}\]

\[\boxed{y = -\frac{3}{4}}\]

~IYN~

See also

2014 UNCO Math Contest II (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10
All UNCO Math Contest Problems and Solutions