Difference between revisions of "Mock AIME 5 2005-2006 Problems/Problem 6"

m (Created page with "== Problem == == Solution == == See also == {{Mock AIME box|year=2005-2006|n=5|source=76847|num-b=5|num-a=7}} Category:Intermediate Algebra Problems")
 
m (Problem)
 
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
<math>P_1</math>, <math>P_2</math>, and <math>P_3</math> are polynomials defined by:
 +
 +
: <math>P_1(x) = 1+x+x^3+x^4+\cdots+x^{96}+x^{97}+x^{99}+x^{100}</math>
 +
: <math>P_2(x) = 1-x+x^2-\cdots-x^{99}+x^{100}</math>
 +
: <math>P_3(x) = 1+x+x^2+\cdots+x^{66}+x^{67}</math>
 +
 +
Find the number of distinct complex roots of <math>P_1 \cdot P_2 \cdot P_3</math>.
 +
 +
== Solution ==
  
 
== Solution ==
 
== Solution ==

Latest revision as of 20:17, 8 October 2014

Problem

$P_1$, $P_2$, and $P_3$ are polynomials defined by:

$P_1(x) = 1+x+x^3+x^4+\cdots+x^{96}+x^{97}+x^{99}+x^{100}$
$P_2(x) = 1-x+x^2-\cdots-x^{99}+x^{100}$
$P_3(x) = 1+x+x^2+\cdots+x^{66}+x^{67}$

Find the number of distinct complex roots of $P_1 \cdot P_2 \cdot P_3$.

Solution

Solution

See also

Mock AIME 5 2005-2006 (Problems, Source)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15