Difference between revisions of "1958 AHSME Problems/Problem 47"
(Created page with "== Problem == <math> ABCD</math> is a rectangle (see the accompanying diagram) with <math> P</math> any point on <math> \overline{AB}</math>. <math> \overline{PS} \perp \overline...") |
(→Solution) |
||
(27 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | <math> ABCD</math> is a rectangle (see the accompanying diagram) with <math> P</math> any point on <math> \overline{AB}</math>. <math> \overline{PS} \perp \overline{BD}</math> and <math> \overline{PR} \perp \overline{AC}</math>. <math> \overline{AF} \perp \overline{BD}</math> and <math> \overline{PQ} \perp \overline{AF}</math>. Then <math> PR | + | <math> ABCD</math> is a rectangle (see the accompanying diagram) with <math> P</math> any point on <math> \overline{AB}</math>. <math> \overline{PS} \perp \overline{BD}</math> and <math> \overline{PR} \perp \overline{AC}</math>. <math> \overline{AF} \perp \overline{BD}</math> and <math> \overline{PQ} \perp \overline{AF}</math>. Then <math> PR + PS</math> is equal to: |
<asy> | <asy> | ||
Line 15: | Line 15: | ||
<math> \textbf{(A)}\ PQ\qquad | <math> \textbf{(A)}\ PQ\qquad | ||
\textbf{(B)}\ AE\qquad | \textbf{(B)}\ AE\qquad | ||
− | \textbf{(C)}\ PT | + | \textbf{(C)}\ PT + AT\qquad |
\textbf{(D)}\ AF\qquad | \textbf{(D)}\ AF\qquad | ||
\textbf{(E)}\ EF</math> | \textbf{(E)}\ EF</math> | ||
+ | == Solution == | ||
+ | |||
+ | Step I: | ||
+ | Since <math>\overline{\rm PQ}</math> and <math>\overline{\rm BD}</math> are both perpendicular to <math>\overline{\rm AF}</math>, <math>\overline{\rm PQ} || \overline{\rm BD}</math>. Thus, <math>\angle APQ = \angle ABD</math>. | ||
+ | Also, <math>\angle ABD</math> = <math>\angle CAB</math> because <math>ABCD</math> is a rectangle. Thus, <math>\angle APQ = \angle ABD = \angle CAB</math>. | ||
+ | Since <math>\angle APQ = \angle CAB</math>, <math>\triangle APT</math> is isosceles with <math>PT = AT</math>. | ||
+ | |||
+ | |||
+ | Step II: | ||
+ | <math>\angle ATQ</math> and <math>\angle PTR</math> are vertical angles and are congruent. Thus, by HL congruence, <math>\triangle ATQ \cong \triangle PTR</math>, so <math>AQ = PR</math>. | ||
− | == | + | |
− | <math>\fbox{}</math> | + | Step III: |
+ | We also know that <math>PSFQ</math> is a rectangle, since <math>\overline{\rm PS} \perp \overline{\rm BD}</math>, <math>\overline{\rm BF} \perp \overline{\rm AF}</math>, and <math>\overline{\rm PQ} \perp \overline{\rm AF}</math>. | ||
+ | |||
+ | |||
+ | Step IV: | ||
+ | Since <math>PSFQ</math> is a rectangle, <math>QF = PS</math>. We also found earlier that <math>AQ = PR</math>. Thus, <math>PR + PS = AQ + QF = AF</math>. | ||
+ | |||
+ | |||
+ | Our answer is <math>PR + PS = \fbox{D) AF}</math> | ||
+ | |||
+ | ~ lovesummer | ||
== See Also == | == See Also == |
Latest revision as of 12:14, 23 June 2024
Problem
is a rectangle (see the accompanying diagram) with any point on . and . and . Then is equal to:
Solution
Step I: Since and are both perpendicular to , . Thus, . Also, = because is a rectangle. Thus, . Since , is isosceles with .
Step II:
and are vertical angles and are congruent. Thus, by HL congruence, , so .
Step III:
We also know that is a rectangle, since , , and .
Step IV:
Since is a rectangle, . We also found earlier that . Thus, .
Our answer is
~ lovesummer
See Also
1958 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 46 |
Followed by Problem 48 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.