Difference between revisions of "1968 AHSME Problems/Problem 2"

m (See also)
(Added solution to the problem)
 
(One intermediate revision by one other user not shown)
Line 9: Line 9:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{B}</math>
+
 
 +
Because <math>64=4^3</math> and <math>256=4^4</math>, we can change all of the numbers in the equation to exponents with base <math>4</math> and solve the equation:
 +
\begin{align*}
 +
\frac{64^{x-1}}{4^{x-1}}=256^{2x} \\
 +
\frac{(4^3)^{x-1}}{4^{x-1}}=(4^4)^{2x} \\
 +
\frac{4^{3x-3}}{4^{x-1}}=4^{8x} \\
 +
4^{2x-2}=4^{8x} \\
 +
2x-2=8x \\
 +
x-1=4x \\
 +
3x=-1 \\
 +
x=\frac{-1}{3} \\
 +
\end{align*}
 +
 
 +
Thus, our desired answer is <math>\fbox{(B) -1/3}</math>.
  
 
== See also ==
 
== See also ==
{{AHSME box|year=1968|num-b=1|num-a=3}}   
+
{{AHSME 35p box|year=1968|num-b=1|num-a=3}}   
  
 
[[Category: Introductory Algebra Problems]]
 
[[Category: Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 16:30, 17 July 2024

Problem

The real value of $x$ such that $64^{x-1}$ divided by $4^{x-1}$ equals $256^{2x}$ is:

$\text{(A) } -\frac{2}{3}\quad\text{(B) } -\frac{1}{3}\quad\text{(C) } 0\quad\text{(D) } \frac{1}{4}\quad\text{(E) } \frac{3}{8}$



Solution

Because $64=4^3$ and $256=4^4$, we can change all of the numbers in the equation to exponents with base $4$ and solve the equation: \begin{align*} \frac{64^{x-1}}{4^{x-1}}=256^{2x} \\ \frac{(4^3)^{x-1}}{4^{x-1}}=(4^4)^{2x} \\ \frac{4^{3x-3}}{4^{x-1}}=4^{8x} \\ 4^{2x-2}=4^{8x} \\ 2x-2=8x \\ x-1=4x \\ 3x=-1 \\ x=\frac{-1}{3} \\ \end{align*}

Thus, our desired answer is $\fbox{(B) -1/3}$.

See also

1968 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png