Difference between revisions of "1994 AHSME Problems/Problem 12"

(Solution)
m (Solution)
 
(One intermediate revision by one other user not shown)
Line 5: Line 5:
 
==Solution==
 
==Solution==
 
We simplify step by step as follows: <cmath>\begin{align*}(i-i^{-1})^{-1}&=\frac{1}{i-i^{-1}}\\&=\frac{1}{i-\frac{1}{i}}\\&=\frac{1}{\left(\frac{i^2-1}{i}\right)}\\&=\frac{i}{i^2-1}\\&=\boxed{\textbf{(D) }-\frac{i}{2}.}\end{align*}</cmath>
 
We simplify step by step as follows: <cmath>\begin{align*}(i-i^{-1})^{-1}&=\frac{1}{i-i^{-1}}\\&=\frac{1}{i-\frac{1}{i}}\\&=\frac{1}{\left(\frac{i^2-1}{i}\right)}\\&=\frac{i}{i^2-1}\\&=\boxed{\textbf{(D) }-\frac{i}{2}.}\end{align*}</cmath>
 +
 +
--Solution by [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=200685 TheMaskedMagician]
 +
 +
==See Also==
 +
 +
{{AHSME box|year=1994|num-b=11|num-a=13}}
 +
{{MAA Notice}}

Latest revision as of 16:34, 9 January 2021

Problem

If $i^2=-1$, then $(i-i^{-1})^{-1}=$

$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ -2i \qquad\textbf{(C)}\ 2i \qquad\textbf{(D)}\ -\frac{i}{2} \qquad\textbf{(E)}\ \frac{i}{2}$

Solution

We simplify step by step as follows: \begin{align*}(i-i^{-1})^{-1}&=\frac{1}{i-i^{-1}}\\&=\frac{1}{i-\frac{1}{i}}\\&=\frac{1}{\left(\frac{i^2-1}{i}\right)}\\&=\frac{i}{i^2-1}\\&=\boxed{\textbf{(D) }-\frac{i}{2}.}\end{align*}

--Solution by TheMaskedMagician

See Also

1994 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png