Difference between revisions of "Square root property"

(Created page with "The '''square root property''' is a method for solving quadratic equations. ==Method== First we must convert the quadratic to either t...")
 
(Method)
 
(3 intermediate revisions by 2 users not shown)
Line 7: Line 7:
 
===First format===
 
===First format===
  
<math>x^2=18</math> take the square root of both sides
+
<math>x^2=18</math>  
 +
 
 +
take the square root of both sides
 +
 
 
<math>x=\pm\sqrt{18}</math>
 
<math>x=\pm\sqrt{18}</math>
  
Line 14: Line 17:
 
===Second format===
 
===Second format===
  
<math>(3x+4)^2=5</math> take the square root of both sides
+
<math>(3x+4)^2=5</math>  
<math>3x+4=\pm\sqrt{5}</math> isolate <math>x</math>
+
 
 +
take the square root of both sides
 +
 
 +
<math>3x+4=\pm\sqrt{5}</math>  
 +
 
 +
isolate <math>x</math>
 +
 
 
<math>x=\frac{\pm\sqrt{5}-4}{3}</math>
 
<math>x=\frac{\pm\sqrt{5}-4}{3}</math>
 +
 +
  
 
and those are the roots.
 
and those are the roots.

Latest revision as of 22:55, 15 May 2014

The square root property is a method for solving quadratic equations.

Method

First we must convert the quadratic to either the form $ax^2=b$ or $(yx+z)^2=w$.

First format

$x^2=18$

take the square root of both sides

$x=\pm\sqrt{18}$

so the roots are $\sqrt{18}$ and $-\sqrt{18}$.

Second format

$(3x+4)^2=5$

take the square root of both sides

$3x+4=\pm\sqrt{5}$

isolate $x$

$x=\frac{\pm\sqrt{5}-4}{3}$


and those are the roots.