Difference between revisions of "2014 AIME I Problems/Problem 15"

(Solution)
(Solution 6)
 
(45 intermediate revisions by 13 users not shown)
Line 3: Line 3:
 
In <math>\triangle ABC</math>, <math>AB = 3</math>, <math>BC = 4</math>, and <math>CA = 5</math>. Circle <math>\omega</math> intersects <math>\overline{AB}</math> at <math>E</math> and <math>B</math>, <math>\overline{BC}</math> at <math>B</math> and <math>D</math>, and <math>\overline{AC}</math> at <math>F</math> and <math>G</math>. Given that <math>EF=DF</math> and <math>\frac{DG}{EG} = \frac{3}{4}</math>, length <math>DE=\frac{a\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime positive integers, and <math>b</math> is a positive integer not divisible by the square of any prime. Find <math>a+b+c</math>.
 
In <math>\triangle ABC</math>, <math>AB = 3</math>, <math>BC = 4</math>, and <math>CA = 5</math>. Circle <math>\omega</math> intersects <math>\overline{AB}</math> at <math>E</math> and <math>B</math>, <math>\overline{BC}</math> at <math>B</math> and <math>D</math>, and <math>\overline{AC}</math> at <math>F</math> and <math>G</math>. Given that <math>EF=DF</math> and <math>\frac{DG}{EG} = \frac{3}{4}</math>, length <math>DE=\frac{a\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime positive integers, and <math>b</math> is a positive integer not divisible by the square of any prime. Find <math>a+b+c</math>.
  
== Solution ==
+
== Solution 1 ==
  
First we note that triangle DEF is an isosceles right triangle with hypotenuse DE the same as the diameter of "omega". We also note that triangle "DGE similar to ABC" since angle EGD is a right angle and the ratios of the sides are 3:4:5. From congruent arc intersections, we know that angle GED congruent to angle GBC, and that from similar triangles angle GED also congruent to angle GCB. Thus, triangle BGC is an isosceles triangle with BG = GC, so G is the midpoint of AC and AG = GC = 5/2. Similarly, we can find from angle chasing that BF is the angle bisector of B, so from the angle bisector theorem we have AF/AB = CF/CB, so AF = 15/7 and CF = 20/7. Lastly, we apply power of a point from points A and C with respect to "omega" and have AE*AB=AF*AG and <math>CD \times CB=CG \times CF</math>, so we can compute that EB = 17/14 and DB = 31/14. From Pythagorean Theorem, we result in <math>DE = \frac{25 \sqrt{2}}{14}</math>, so <math>a+b+c=25+2+14= \boxed{041}</math>
+
Since <math>\angle DBE = 90^\circ</math>, <math>DE</math> is the diameter of <math>\omega</math>. Then <math>\angle DFE=\angle DGE=90^\circ</math>. But <math>DF=FE</math>, so <math>\triangle DEF</math> is a 45-45-90 triangle. Letting <math>DG=3x</math>, we have that <math>EG=4x</math>, <math>DE=5x</math>, and <math>DF=EF=\frac{5x}{\sqrt{2}}</math>.
 +
 
 +
Note that <math>\triangle DGE \sim \triangle ABC</math> by SAS similarity, so <math>\angle BAC = \angle GDE</math> and <math>\angle ACB = \angle DEG</math>. Since <math>DEFG</math> is a cyclic quadrilateral, <math>\angle BAC = \angle GDE=180^\circ-\angle EFG = \angle AFE</math> and <math>\angle ACB = \angle DEG = \angle GFD</math>, implying that <math>\triangle AFE</math> and <math>\triangle CDF</math> are isosceles. As a result, <math>AE=CD=\frac{5x}{\sqrt{2}}</math>, so <math>BE=3-\frac{5x}{\sqrt{2}}</math> and <math>BD =4-\frac{5x}{\sqrt{2}}</math>.
 +
 
 +
Finally, using the Pythagorean Theorem on <math>\triangle BDE</math>,
 +
<cmath> \left(3-\frac{5x}{\sqrt{2}}\right)^2 + \left(4-\frac{5x}{\sqrt{2}}\right)^2 = (5x)^2</cmath>
 +
Solving for <math>x</math>, we get that <math>x=\frac{5\sqrt{2}}{14}</math>, so <math>DE= 5x =\frac{25 \sqrt{2}}{14}</math>. Thus, the answer is <math>25+2+14=\boxed{041}</math>.
 +
 
 +
== Solution 2 ==
 +
 
 +
<asy>
 +
pair A = (0,3);
 +
pair B = (0,0);
 +
pair C = (4,0);
 +
draw(A--B--C--cycle);
 +
dotfactor = 3;
 +
dot("$A$",A,dir(135));
 +
dot("$B$",B,dir(215));
 +
dot("$C$",C,dir(305));
 +
pair D = (2.21, 0);
 +
pair E = (0, 1.21);
 +
pair F = (1.71, 1.71);
 +
pair G = (2, 1.5);
 +
dot("$D$",D,dir(270));
 +
dot("$E$",E,dir(180));
 +
dot("$F$",F,dir(90));
 +
dot("$G$",G,dir(0));
 +
draw(Circle((1.109, 0.609), 1.28));
 +
draw(D--E);
 +
draw(E--F);
 +
draw(D--F);
 +
draw(E--G);
 +
draw(D--G);
 +
draw(B--F);
 +
draw(B--G);
 +
</asy>
 +
 
 +
First we note that <math>\triangle DEF</math> is an isosceles right triangle with hypotenuse <math>\overline{DE}</math> the same as the diameter of <math>\omega</math>. We also note that <math>\triangle DGE \sim \triangle ABC</math> since <math>\angle EGD</math> is a right angle and the ratios of the sides are <math>3:4:5</math>.  
 +
 
 +
From congruent arc intersections, we know that <math>\angle GED \cong \angle GBC</math>, and that from similar triangles <math>\angle GED</math> is also congruent to <math>\angle GCB</math>. Thus, <math>\triangle BGC</math> is an isosceles triangle with <math>BG = GC</math>, so <math>G</math> is the midpoint of <math>\overline{AC}</math> and <math>AG = GC = 5/2</math>. Similarly, we can find from angle chasing that <math>\angle ABF = \angle EDF = \frac{\pi}4</math>. Therefore, <math>\overline{BF}</math> is the angle bisector of <math>\angle B</math>. From the angle bisector theorem, we have <math>\frac{AF}{AB} = \frac{CF}{CB}</math>, so <math>AF = 15/7</math> and <math>CF = 20/7</math>.  
 +
 
 +
Lastly, we apply power of a point from points <math>A</math> and <math>C</math> with respect to <math>\omega</math> and have <math>AE \times AB=AF \times AG</math> and <math>CD \times CB=CG \times CF</math>, so we can compute that <math>EB = \frac{17}{14}</math> and <math>DB = \frac{31}{14}</math>. From the Pythagorean Theorem, we result in <math>DE = \frac{25 \sqrt{2}}{14}</math>, so <math>a+b+c=25+2+14= \boxed{041}</math>
 +
 
 +
 
 +
Also: <math>FG=\frac{20}{7}-\frac{5}{2}=\frac{5}{2}-\frac{15}{7}=\frac{5}{14}</math>. We can also use Ptolemy's Theorem on quadrilateral <math>DEFG</math> to figure what <math>FG</math> is in terms of <math>d</math>:
 +
<cmath>DE\cdot FG+DG\cdot EF=DF\cdot EG</cmath>
 +
<cmath>d\cdot FG+\frac{3d}{5}\cdot \frac{d}{\sqrt{2}}=\frac{4d}{5}\cdot \frac{d}{\sqrt{2}}</cmath>
 +
<cmath>d\cdot FG+\frac{3d^2}{5\sqrt{2}}=\frac{4d^2}{5\sqrt{2}}\implies FG=\frac{d}{5\sqrt{2}}</cmath>
 +
Thus <math>\frac{d}{5\sqrt{2}}=\frac{5}{14}\rightarrow d=5\sqrt{2}\cdot\frac{5}{14}=\frac{25\sqrt{2}}{14}</math>. <math>a+b+c=25+2+14= \boxed{041}</math>
 +
 
 +
===Solution 3===
 +
Call <math>DE=x</math> and as a result <math>DF=EF=\frac{x\sqrt{2}}{2}, EG=\frac{4x}{5}, GD=\frac{3x}{5}</math>. Since <math>EFGD</math> is cyclic we just need to get <math>DG</math> and using LoS(for more detail see the <math>2</math>nd paragraph of Solution <math>2</math>) we get <math>AG=\frac{5}{2}</math> and using a similar argument(use LoS again) and subtracting you get <math>FG=\frac{5}{14}</math> so you can use Ptolemy to get <math>x=\frac{25\sqrt{2}}{14} \implies \boxed{041}</math>.
 +
~First
 +
 
 +
==Solution 4==
 +
See inside the <math>\triangle DEF</math>, we can find that <math>AG>AF</math> since if <math>AG<AF</math>, we can see that Ptolemy Theorem inside cyclic quadrilateral <math>EFGD</math> doesn't work. Now let's see when <math>AG>AF</math>, since  <math>\frac{DG}{EG} = \frac{3}{4}</math>, we can assume that <math>EG=4x;GD=3x;ED=5x</math>, since we know <math>EF=FD</math> so <math>\triangle EFD </math> is isosceles right triangle. We can denote <math>DF=EF=\frac{5x\sqrt{2}}{2}</math>.Applying Ptolemy Theorem inside the cyclic quadrilateral <math>EFGD</math> we can get the length of <math>FG</math> can be represented as <math>\frac{x\sqrt{2}}{2}</math>. After observing, we can see <math>\angle AFE=\angle EDG</math>, whereas <math>\angle A=\angle EDG</math> so we can see <math>\triangle AEF</math> is isosceles triangle. Since <math>\triangle ABC</math> is a <math>3-4-5</math> triangle so we can directly know that the length of AF can be written in the form of <math>3x\sqrt{2}</math>. Denoting a point <math>J</math> on side <math>AC</math> with that <math>DJ</math> is perpendicular to side <math>AC</math>. Now with the same reason, we can see that <math>\triangle DJG</math> is a isosceles right triangle, so we can get <math>GJ=\frac{3x\sqrt{2}}{2}</math> while the segment <math>CJ</math> is <math>2x\sqrt{2}</math> since its 3-4-5 again. Now adding all those segments together we can find that <math>AC=5=7x\sqrt{2}</math> and <math>x=\frac{5\sqrt{2}}{14}</math> and the desired <math>ED=5x=\frac{25\sqrt{2}}{14}</math>
 +
which our answer is <math>\boxed{041}</math> ~bluesoul
 +
 
 +
==Solution 5==
 +
[[File:2014 AIME II 15.png|450px|right]]
 +
The main element of the solution is the proof that <math>BF</math> is bisector of <math>\angle B.</math>
 +
 
 +
Let <math>O</math> be the midpoint of <math>DE.</math> <math>\angle EBF = 90^\circ \implies</math>
 +
 
 +
<math>O</math> is the center of the circle <math>BDGFE.</math>
 +
<math>\angle EOF = 90^\circ \implies \overset{\Large\frown} {EF} = 90^\circ \implies \angle EBF = 45^\circ \implies</math>
 +
BF is bisector of <math>\angle ABC\implies BF = \frac {2AB \cdot BC}{AB+BC} \cos 45^\circ =\frac {12 \cdot \sqrt{2}}{7}.</math>
 +
<cmath>\angle EGD = 90^\circ, \frac {EG}{GD}=\frac{4}{3} \implies</cmath>
 +
<cmath>\angle GED = \angle GCD =\gamma \implies  \overset{\Large\frown} {DG} = 2\gamma.</cmath>
 +
<cmath>2\angle ACB =  \overset{\Large\frown} {BEF} -  \overset{\Large\frown} {DG} \implies  \overset{\Large\frown} {BEF} = 4 \gamma \implies</cmath>
 +
<cmath>\angle BOF = 4 \gamma \implies \angle OBF = \angle OFB = 90^\circ – 2 \gamma.</cmath>
 +
Let <math>BO = EO = DO = r \implies BF = 2 r \cos(90^\circ – 2\gamma) =</math>
 +
<cmath>=2 r \sin 2\gamma = 4r \sin \gamma \cdot \cos \gamma = 4 r\cdot \frac {3}{5} \cdot \frac {4}{5} = \frac {48}{25} = \frac {12 \cdot \sqrt{2}}{7}\implies</cmath>
 +
<cmath>r = \frac {25 \cdot \sqrt{2}}{28}\implies ED = 2r =  \frac {25 \cdot \sqrt{2}}{14}\implies  \boxed{\textbf{041}}.</cmath>
 +
'''vladimir.shelomovskii@gmail.com, vvsss'''
 +
 
 +
==Solution 6 ==
 +
[[File:2014 AIME II 15a.png|450px|right]]
 +
The main element of the solution is the proof that <math>G</math> is midpoint of <math>AC.</math>
 +
 
 +
As in Solution 5 we get <math>\angle GED = \angle DBG =\gamma \implies</math>
 +
 
 +
<math>\triangle BCG </math> is isosceles triangle with <math>BG=CG.</math>
 +
 
 +
Similarly <math>BG = AG \implies AG = CG = BG = \frac {AC}{2} =\frac {5}{2}.</math>
 +
 
 +
<cmath>\overset{\Large\frown} {FG} = 90^\circ – \overset{\Large\frown} {GD} =  90^\circ – 2\gamma \implies</cmath>
 +
<cmath>\overset{\Large\frown} {BFG} = 4\gamma + 90^\circ – 2\gamma = 90^\circ + 2\gamma \implies</cmath>
 +
<cmath>\angle BOG = 90^\circ + 2\gamma \implies \angle BGO = \angle GBO = 45^\circ - \gamma.</cmath>
 +
Let <math>\hspace{10mm} BO = EO = DO = r \implies</math>
 +
<cmath>BG = 2 r \cos(45^\circ – \gamma) = 2 r (\sin \gamma + \cos \gamma)\frac {\sqrt {2}}{2} =</cmath>
 +
<cmath>r \biggl(\frac {3}{5} + \frac {4}{5}\biggr) \sqrt {2} = r \frac {7 \sqrt{2}}{5} = \frac {5}{2}\implies</cmath>
 +
<cmath>r = \frac {25 \cdot \sqrt{2}}{28}\implies ED = \frac {25 \cdot \sqrt{2}}{14}\implies  \boxed{\textbf{041}}.</cmath>
 +
'''vladimir.shelomovskii@gmail.com, vvsss'''
 +
 
 +
==Solution 7==
 +
Let <math>(BEFGD) = \omega</math>.
 +
By Incenter-Excenter(Fact <math>5</math>), <math>F</math> is the angle bisector of <math>\angle B</math>.
 +
Then by Ratio Lemma we have
 +
<cmath>\frac{AG}{CG} = \frac{\sin(ABG)}{\sin(CBG)} \cdot \frac{AB}{BC} = \frac{\sin(GDE)}{\sin(DEG)} \cdot \frac{3}{4} = 1</cmath>
 +
Thus, <math>G</math> is the midpoint of <math>AC</math>.
 +
 
 +
We can calculate <math>AF</math> and <math>CF</math> to be <math>\frac{15}{7}</math> and <math>\frac{20}{7}</math> respectively.
 +
And then by Power of a Point, we have
 +
<math>\newline</math>
 +
<cmath>\operatorname{Pow}_{\omega}(A) = AE \cdot AB = AF \cdot AG \implies AE = \frac{25}{14}</cmath>
 +
And then similarly, we have <math>CD = AE = \frac{25}{14}</math>.
 +
<math>\newline</math>
 +
 
 +
Then <math>EB = \frac{17}{14}</math> and <math>DB = \frac{31}{14}</math> and by Pythagorean we have <math>DE = \frac{25\sqrt{2}}{14}</math>, so our answer is <math>\boxed{\textbf{041}}.</math>
 +
 
 +
~dolphinday
 +
 
 +
==Video Solution by mop 2024==
 +
https://youtu.be/GxxZYZrQl2A
 +
 
 +
~r00tsOfUnity
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2014|n=I|num-b=14|after=Last Question}}
 
{{AIME box|year=2014|n=I|num-b=14|after=Last Question}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 21:30, 28 January 2024

Problem 15

In $\triangle ABC$, $AB = 3$, $BC = 4$, and $CA = 5$. Circle $\omega$ intersects $\overline{AB}$ at $E$ and $B$, $\overline{BC}$ at $B$ and $D$, and $\overline{AC}$ at $F$ and $G$. Given that $EF=DF$ and $\frac{DG}{EG} = \frac{3}{4}$, length $DE=\frac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. Find $a+b+c$.

Solution 1

Since $\angle DBE = 90^\circ$, $DE$ is the diameter of $\omega$. Then $\angle DFE=\angle DGE=90^\circ$. But $DF=FE$, so $\triangle DEF$ is a 45-45-90 triangle. Letting $DG=3x$, we have that $EG=4x$, $DE=5x$, and $DF=EF=\frac{5x}{\sqrt{2}}$.

Note that $\triangle DGE \sim \triangle ABC$ by SAS similarity, so $\angle BAC = \angle GDE$ and $\angle ACB = \angle DEG$. Since $DEFG$ is a cyclic quadrilateral, $\angle BAC = \angle GDE=180^\circ-\angle EFG = \angle AFE$ and $\angle ACB = \angle DEG = \angle GFD$, implying that $\triangle AFE$ and $\triangle CDF$ are isosceles. As a result, $AE=CD=\frac{5x}{\sqrt{2}}$, so $BE=3-\frac{5x}{\sqrt{2}}$ and $BD =4-\frac{5x}{\sqrt{2}}$.

Finally, using the Pythagorean Theorem on $\triangle BDE$, \[\left(3-\frac{5x}{\sqrt{2}}\right)^2 + \left(4-\frac{5x}{\sqrt{2}}\right)^2 = (5x)^2\] Solving for $x$, we get that $x=\frac{5\sqrt{2}}{14}$, so $DE= 5x =\frac{25 \sqrt{2}}{14}$. Thus, the answer is $25+2+14=\boxed{041}$.

Solution 2

[asy] pair A = (0,3); pair B = (0,0); pair C = (4,0); draw(A--B--C--cycle); dotfactor = 3; dot("$A$",A,dir(135)); dot("$B$",B,dir(215)); dot("$C$",C,dir(305)); pair D = (2.21, 0); pair E = (0, 1.21); pair F = (1.71, 1.71); pair G = (2, 1.5); dot("$D$",D,dir(270)); dot("$E$",E,dir(180)); dot("$F$",F,dir(90)); dot("$G$",G,dir(0)); draw(Circle((1.109, 0.609), 1.28)); draw(D--E); draw(E--F); draw(D--F); draw(E--G); draw(D--G); draw(B--F); draw(B--G); [/asy]

First we note that $\triangle DEF$ is an isosceles right triangle with hypotenuse $\overline{DE}$ the same as the diameter of $\omega$. We also note that $\triangle DGE \sim \triangle ABC$ since $\angle EGD$ is a right angle and the ratios of the sides are $3:4:5$.

From congruent arc intersections, we know that $\angle GED \cong \angle GBC$, and that from similar triangles $\angle GED$ is also congruent to $\angle GCB$. Thus, $\triangle BGC$ is an isosceles triangle with $BG = GC$, so $G$ is the midpoint of $\overline{AC}$ and $AG = GC = 5/2$. Similarly, we can find from angle chasing that $\angle ABF = \angle EDF = \frac{\pi}4$. Therefore, $\overline{BF}$ is the angle bisector of $\angle B$. From the angle bisector theorem, we have $\frac{AF}{AB} = \frac{CF}{CB}$, so $AF = 15/7$ and $CF = 20/7$.

Lastly, we apply power of a point from points $A$ and $C$ with respect to $\omega$ and have $AE \times AB=AF \times AG$ and $CD \times CB=CG \times CF$, so we can compute that $EB = \frac{17}{14}$ and $DB = \frac{31}{14}$. From the Pythagorean Theorem, we result in $DE = \frac{25 \sqrt{2}}{14}$, so $a+b+c=25+2+14= \boxed{041}$


Also: $FG=\frac{20}{7}-\frac{5}{2}=\frac{5}{2}-\frac{15}{7}=\frac{5}{14}$. We can also use Ptolemy's Theorem on quadrilateral $DEFG$ to figure what $FG$ is in terms of $d$: \[DE\cdot FG+DG\cdot EF=DF\cdot EG\] \[d\cdot FG+\frac{3d}{5}\cdot \frac{d}{\sqrt{2}}=\frac{4d}{5}\cdot \frac{d}{\sqrt{2}}\] \[d\cdot FG+\frac{3d^2}{5\sqrt{2}}=\frac{4d^2}{5\sqrt{2}}\implies FG=\frac{d}{5\sqrt{2}}\] Thus $\frac{d}{5\sqrt{2}}=\frac{5}{14}\rightarrow d=5\sqrt{2}\cdot\frac{5}{14}=\frac{25\sqrt{2}}{14}$. $a+b+c=25+2+14= \boxed{041}$

Solution 3

Call $DE=x$ and as a result $DF=EF=\frac{x\sqrt{2}}{2}, EG=\frac{4x}{5}, GD=\frac{3x}{5}$. Since $EFGD$ is cyclic we just need to get $DG$ and using LoS(for more detail see the $2$nd paragraph of Solution $2$) we get $AG=\frac{5}{2}$ and using a similar argument(use LoS again) and subtracting you get $FG=\frac{5}{14}$ so you can use Ptolemy to get $x=\frac{25\sqrt{2}}{14} \implies \boxed{041}$. ~First

Solution 4

See inside the $\triangle DEF$, we can find that $AG>AF$ since if $AG<AF$, we can see that Ptolemy Theorem inside cyclic quadrilateral $EFGD$ doesn't work. Now let's see when $AG>AF$, since $\frac{DG}{EG} = \frac{3}{4}$, we can assume that $EG=4x;GD=3x;ED=5x$, since we know $EF=FD$ so $\triangle EFD$ is isosceles right triangle. We can denote $DF=EF=\frac{5x\sqrt{2}}{2}$.Applying Ptolemy Theorem inside the cyclic quadrilateral $EFGD$ we can get the length of $FG$ can be represented as $\frac{x\sqrt{2}}{2}$. After observing, we can see $\angle AFE=\angle EDG$, whereas $\angle A=\angle EDG$ so we can see $\triangle AEF$ is isosceles triangle. Since $\triangle ABC$ is a $3-4-5$ triangle so we can directly know that the length of AF can be written in the form of $3x\sqrt{2}$. Denoting a point $J$ on side $AC$ with that $DJ$ is perpendicular to side $AC$. Now with the same reason, we can see that $\triangle DJG$ is a isosceles right triangle, so we can get $GJ=\frac{3x\sqrt{2}}{2}$ while the segment $CJ$ is $2x\sqrt{2}$ since its 3-4-5 again. Now adding all those segments together we can find that $AC=5=7x\sqrt{2}$ and $x=\frac{5\sqrt{2}}{14}$ and the desired $ED=5x=\frac{25\sqrt{2}}{14}$ which our answer is $\boxed{041}$ ~bluesoul

Solution 5

2014 AIME II 15.png

The main element of the solution is the proof that $BF$ is bisector of $\angle B.$

Let $O$ be the midpoint of $DE.$ $\angle EBF = 90^\circ \implies$

$O$ is the center of the circle $BDGFE.$ $\angle EOF = 90^\circ \implies \overset{\Large\frown} {EF} = 90^\circ \implies \angle EBF = 45^\circ \implies$ BF is bisector of $\angle ABC\implies BF = \frac {2AB \cdot BC}{AB+BC} \cos 45^\circ =\frac {12 \cdot \sqrt{2}}{7}.$ \[\angle EGD = 90^\circ, \frac {EG}{GD}=\frac{4}{3} \implies\] \[\angle GED = \angle GCD =\gamma \implies  \overset{\Large\frown} {DG} = 2\gamma.\] \[2\angle ACB =  \overset{\Large\frown} {BEF} -  \overset{\Large\frown} {DG} \implies  \overset{\Large\frown} {BEF} = 4 \gamma \implies\] \[\angle BOF = 4 \gamma \implies \angle OBF = \angle OFB = 90^\circ – 2 \gamma.\] Let $BO = EO = DO = r \implies BF = 2 r \cos(90^\circ – 2\gamma) =$ \[=2 r \sin 2\gamma = 4r \sin \gamma \cdot \cos \gamma = 4 r\cdot \frac {3}{5} \cdot \frac {4}{5} = \frac {48}{25} = \frac {12 \cdot \sqrt{2}}{7}\implies\] \[r = \frac {25 \cdot \sqrt{2}}{28}\implies ED = 2r =  \frac {25 \cdot \sqrt{2}}{14}\implies  \boxed{\textbf{041}}.\] vladimir.shelomovskii@gmail.com, vvsss

Solution 6

2014 AIME II 15a.png

The main element of the solution is the proof that $G$ is midpoint of $AC.$

As in Solution 5 we get $\angle GED = \angle DBG =\gamma \implies$

$\triangle BCG$ is isosceles triangle with $BG=CG.$

Similarly $BG = AG \implies AG = CG = BG = \frac {AC}{2} =\frac {5}{2}.$

\[\overset{\Large\frown} {FG} = 90^\circ – \overset{\Large\frown} {GD} =  90^\circ – 2\gamma \implies\] \[\overset{\Large\frown} {BFG} = 4\gamma + 90^\circ – 2\gamma = 90^\circ + 2\gamma \implies\] \[\angle BOG = 90^\circ + 2\gamma \implies \angle BGO = \angle GBO = 45^\circ - \gamma.\] Let $\hspace{10mm} BO = EO = DO = r \implies$ \[BG = 2 r \cos(45^\circ – \gamma) = 2 r (\sin \gamma + \cos \gamma)\frac {\sqrt {2}}{2} =\] \[r \biggl(\frac {3}{5} + \frac {4}{5}\biggr) \sqrt {2} = r \frac {7 \sqrt{2}}{5} = \frac {5}{2}\implies\] \[r = \frac {25 \cdot \sqrt{2}}{28}\implies ED = \frac {25 \cdot \sqrt{2}}{14}\implies  \boxed{\textbf{041}}.\] vladimir.shelomovskii@gmail.com, vvsss

Solution 7

Let $(BEFGD) = \omega$. By Incenter-Excenter(Fact $5$), $F$ is the angle bisector of $\angle B$. Then by Ratio Lemma we have \[\frac{AG}{CG} = \frac{\sin(ABG)}{\sin(CBG)} \cdot \frac{AB}{BC} = \frac{\sin(GDE)}{\sin(DEG)} \cdot \frac{3}{4} = 1\] Thus, $G$ is the midpoint of $AC$.

We can calculate $AF$ and $CF$ to be $\frac{15}{7}$ and $\frac{20}{7}$ respectively. And then by Power of a Point, we have $\newline$ \[\operatorname{Pow}_{\omega}(A) = AE \cdot AB = AF \cdot AG \implies AE = \frac{25}{14}\] And then similarly, we have $CD = AE = \frac{25}{14}$. $\newline$

Then $EB = \frac{17}{14}$ and $DB = \frac{31}{14}$ and by Pythagorean we have $DE = \frac{25\sqrt{2}}{14}$, so our answer is $\boxed{\textbf{041}}.$

~dolphinday

Video Solution by mop 2024

https://youtu.be/GxxZYZrQl2A

~r00tsOfUnity

See also

2014 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png