Difference between revisions of "2014 AMC 12A Problems/Problem 18"
m (→Solution) |
MRENTHUSIASM (talk | contribs) m (→Solution 1 (Generalization)) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 8: | Line 8: | ||
\textbf{(E) }511\qquad</math> | \textbf{(E) }511\qquad</math> | ||
− | ==Solution 1== | + | ==Solution 1 (Generalization)== |
+ | For all real numbers <math>a,b,</math> and <math>c</math> such that <math>b>0</math> and <math>b\neq1,</math> note that: | ||
+ | <ol style="margin-left: 1.5em;"> | ||
+ | <li><math>\log_b a</math> is defined if and only if <math>a>0.</math></li><p> | ||
+ | <li>For <math>0<b<1,</math> we conclude that: | ||
+ | <ul style="list-style-type:square;"> | ||
+ | <li><math>\log_b a<c</math> if and only if <math>a>b^c.</math></li><p> | ||
+ | <li><math>\log_b a>c</math> if and only if <math>0<a<b^c.</math></li><p> | ||
+ | </ul> | ||
+ | For <math>b>1,</math> we conclude that: | ||
+ | <ul style="list-style-type:square;"> | ||
+ | <li><math>\log_b a<c</math> if and only if <math>0<a<b^c.</math></li><p> | ||
+ | <li><math>\log_b a>c</math> if and only if <math>a>b^c.</math></li><p> | ||
+ | </ul> | ||
+ | </ol> | ||
+ | Therefore, we have | ||
+ | <cmath>\begin{align*} | ||
+ | \log_{\frac12}(\log_4(\log_{\frac14}(\log_{16}(\log_{\frac1{16}}x)))) \text{ is defined} &\implies \log_4(\log_{\frac14}(\log_{16}(\log_{\frac1{16}}x)))>0 \\ | ||
+ | &\implies \log_{\frac14}(\log_{16}(\log_{\frac1{16}}x))>1 \\ | ||
+ | &\implies 0<\log_{16}(\log_{\frac1{16}}x)<\frac14 \\ | ||
+ | &\implies 1<\log_{\frac1{16}}x<2 \\ | ||
+ | &\implies \frac{1}{256}<x<\frac{1}{16}. | ||
+ | \end{align*}</cmath> | ||
+ | The domain of <math>f(x)</math> is an interval of length <math>\frac{1}{16}-\frac{1}{256}=\frac{15}{256},</math> from which the answer is <math>15+256=\boxed{\textbf{(C) }271}.</math> | ||
+ | |||
+ | <u><b>Remark</b></u> | ||
+ | |||
+ | This problem is quite similar to [[2004_AMC_12A_Problems/Problem_16|2004 AMC 12A Problem 16]]. | ||
+ | ~MRENTHUSIASM | ||
+ | |||
+ | ==Solution 2 (Substitution)== | ||
For simplicity, let <math>a=\log_{\frac{1}{16}}{x},b=\log_{16}a,c=\log_{\frac{1}{4}}b</math>, and <math>d=\log_4c</math>. | For simplicity, let <math>a=\log_{\frac{1}{16}}{x},b=\log_{16}a,c=\log_{\frac{1}{4}}b</math>, and <math>d=\log_4c</math>. | ||
− | The domain of <math>\log_{\frac{1}{2}}x</math> is <math>x \in (0, \infty)</math>, so <math> | + | The domain of <math>\log_{\frac{1}{2}}x</math> is <math>x \in (0, \infty)</math>, so <math>d \in (0, \infty)</math>. |
Thus, <math>\log_4{c} \in (0, \infty) \Rightarrow c \in (1, \infty)</math>. | Thus, <math>\log_4{c} \in (0, \infty) \Rightarrow c \in (1, \infty)</math>. | ||
Since <math>c=\log_{\frac{1}{4}}b</math> we have <math>b \in \left(0, \left(\frac{1}{4}\right)^1\right)=\left(0, \frac{1}{4}\right)</math>. | Since <math>c=\log_{\frac{1}{4}}b</math> we have <math>b \in \left(0, \left(\frac{1}{4}\right)^1\right)=\left(0, \frac{1}{4}\right)</math>. | ||
Line 18: | Line 48: | ||
Finally, since <math>a=\log_{\frac{1}{16}}{x}</math>, <math>x \in \left(\left(\frac{1}{16}\right)^2,\left(\frac{1}{16}\right)^1\right)=\left(\frac{1}{256},\frac{1}{16}\right)</math>. | Finally, since <math>a=\log_{\frac{1}{16}}{x}</math>, <math>x \in \left(\left(\frac{1}{16}\right)^2,\left(\frac{1}{16}\right)^1\right)=\left(\frac{1}{256},\frac{1}{16}\right)</math>. | ||
− | The length of the <math>x</math> interval is <math>\frac{1}{16}-\frac{1}{256}=\frac{15}{256}</math> and the answer is <math>\boxed{ | + | The length of the <math>x</math> interval is <math>\frac{1}{16}-\frac{1}{256}=\frac{15}{256}</math> and the answer is <math>\boxed{\textbf{(C) }271}</math>. |
− | ==Solution | + | ==Solution 3 (Calculus)== |
The domain of <math>f(x)</math> is the range of the inverse function <math>f^{-1}(x)=\left(\frac1{16}\right)^{16^{\left(\frac14\right)^{4^{\left(\frac12\right)^x}}}}</math>. Now <math>f^{-1}(x)</math> can be seen to be strictly decreasing, since <math>\left(\frac12\right)^x</math> is decreasing, so <math>4^{\left(\frac12\right)^x}</math> is decreasing, so <math>\left(\frac14\right)^{4^{\left(\frac12\right)^x}}</math> is increasing, so <math>16^{\left(\frac14\right)^{4^{\left(\frac12\right)^x}}}</math> is increasing, therefore <math>\left(\frac1{16}\right)^{16^{\left(\frac14\right)^{4^{\left(\frac12\right)^x}}}}</math> is decreasing. | The domain of <math>f(x)</math> is the range of the inverse function <math>f^{-1}(x)=\left(\frac1{16}\right)^{16^{\left(\frac14\right)^{4^{\left(\frac12\right)^x}}}}</math>. Now <math>f^{-1}(x)</math> can be seen to be strictly decreasing, since <math>\left(\frac12\right)^x</math> is decreasing, so <math>4^{\left(\frac12\right)^x}</math> is decreasing, so <math>\left(\frac14\right)^{4^{\left(\frac12\right)^x}}</math> is increasing, so <math>16^{\left(\frac14\right)^{4^{\left(\frac12\right)^x}}}</math> is increasing, therefore <math>\left(\frac1{16}\right)^{16^{\left(\frac14\right)^{4^{\left(\frac12\right)^x}}}}</math> is decreasing. | ||
Line 30: | Line 60: | ||
&= \frac{1}{16}. | &= \frac{1}{16}. | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | |||
Similarly, | Similarly, | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
− | + | \lim_{x\to\infty}\left(\frac1{16}\right)^{16^{\left(\frac14\right)^{4^{\left(\frac12\right)^x}}}}&=\left(\frac1{16}\right)^{16^{\left(\frac14\right)^{4^0}}}\\ | |
&= \left(\frac1{16}\right)^{16^{\frac14}}\\ | &= \left(\frac1{16}\right)^{16^{\frac14}}\\ | ||
&= \left(\frac1{16}\right)^2\\ | &= \left(\frac1{16}\right)^2\\ | ||
&= \frac{1}{256}. | &= \frac{1}{256}. | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | Hence the range of <math>f^{-1}(x)</math> (which is then the domain of <math>f(x)</math>) is <math>\left(\frac{1}{256},\frac{1}{16}\right)</math> and the answer is <math>\boxed{ | + | Hence the range of <math>f^{-1}(x)</math> (which is then the domain of <math>f(x)</math>) is <math>\left(\frac{1}{256},\frac{1}{16}\right)</math> and the answer is <math>\boxed{\textbf{(C) }271}</math>. |
==See Also== | ==See Also== | ||
{{AMC12 box|year=2014|ab=A|num-b=17|num-a=19}} | {{AMC12 box|year=2014|ab=A|num-b=17|num-a=19}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 18:04, 10 July 2021
Contents
Problem
The domain of the function is an interval of length , where and are relatively prime positive integers. What is ?
Solution 1 (Generalization)
For all real numbers and such that and note that:
- is defined if and only if
- For we conclude that:
- if and only if
- if and only if
For we conclude that:
- if and only if
- if and only if
Therefore, we have The domain of is an interval of length from which the answer is
Remark
This problem is quite similar to 2004 AMC 12A Problem 16.
~MRENTHUSIASM
Solution 2 (Substitution)
For simplicity, let , and .
The domain of is , so . Thus, . Since we have . Since , we have . Finally, since , .
The length of the interval is and the answer is .
Solution 3 (Calculus)
The domain of is the range of the inverse function . Now can be seen to be strictly decreasing, since is decreasing, so is decreasing, so is increasing, so is increasing, therefore is decreasing.
Therefore, the range of is the open interval . We find: Similarly, Hence the range of (which is then the domain of ) is and the answer is .
See Also
2014 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.