Difference between revisions of "2006 AIME I Problems/Problem 1"
m (→Solution) |
m (Formatting) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | |||
− | + | In [[quadrilateral]] <math>ABCD</math>, <math>\angle B</math> is a [[right angle]], [[diagonal]] <math>\overline{AC}</math> is [[perpendicular]] to <math>\overline{CD}</math>, <math>AB=18</math>, <math>BC=21</math>, and <math>CD=14</math>. Find the [[perimeter]] of <math>ABCD</math>. | |
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | + | == Solution 1 == | |
− | < | + | We construct the following diagram: |
+ | <asy> | ||
+ | pathpen = black; | ||
+ | pair C=(0,0),D=(0,-14),A=(-sqrt(765),0),B=IP(circle(C,21),circle(A,18)); | ||
+ | D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); | ||
+ | D(rightanglemark(A,C,D,40)); | ||
+ | D(rightanglemark(A,B,C,40)); | ||
+ | </asy><!--Asymptote by joml88--> | ||
+ | Using the [[Pythagorean Theorem]], we get the following two equations: | ||
+ | <cmath>AD^2 = AC^2 + CD^2</cmath> | ||
+ | <cmath>AC^2 = AB^2 + BC^2</cmath> | ||
+ | Substituting <math>AB^2 + BC^2</math> for <math>AC^2</math> gives us <math>AD^2 = AB^2 + BC^2 + CD^2</math>. Plugging in the given information, we get <math>AD^2 = 18^2 + 21^2 + 14^2 = 961 \implies AD = 31</math>, so the perimeter is <math>AB+BC+CD+AD = 18+21+14+31 = \boxed{084}</math>. | ||
− | + | == See Also == | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{AIME box|year=2006|n=I|before=First Question|num-a=2}} | {{AIME box|year=2006|n=I|before=First Question|num-a=2}} | ||
− | |||
− | |||
{{MAA Notice}} | {{MAA Notice}} | ||
+ | [[Category:Introductory Geometry Problems]] |
Latest revision as of 15:10, 3 February 2025
Problem
In quadrilateral ,
is a right angle, diagonal
is perpendicular to
,
,
, and
. Find the perimeter of
.
Solution 1
We construct the following diagram:
Using the Pythagorean Theorem, we get the following two equations:
Substituting
for
gives us
. Plugging in the given information, we get
, so the perimeter is
.
See Also
2006 AIME I (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.