Difference between revisions of "1958 AHSME Problems/Problem 12"
(Created page with "==Problem== If <math> P \equal{} \frac{s}{(1 \plus{} k)^n}</math> then <math> n</math> equals: <math> \textbf{(A)}\ \frac{\log{\left(\frac{s}{P}\right)}}{\log{(1 \plus{} k)}}\q...") |
Mathgeek2006 (talk | contribs) (→Problem) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | If <math> P | + | If <math> P = \frac{s}{(1 + k)^n}</math> then <math> n</math> equals: |
− | <math> \textbf{(A)}\ \frac{\log{\left(\frac{s}{P}\right)}}{\log{(1 | + | <math> \textbf{(A)}\ \frac{\log{\left(\frac{s}{P}\right)}}{\log{(1 + k)}}\qquad |
− | \textbf{(B)}\ \log{\left(\frac{s}{P(1 | + | \textbf{(B)}\ \log{\left(\frac{s}{P(1 + k)}\right)}\qquad |
− | \textbf{(C)}\ \log{\left(\frac{s | + | \textbf{(C)}\ \log{\left(\frac{s - P}{1 + k}\right)}\qquad \\ |
− | \textbf{(D)}\ \log{\left(\frac{s}{P}\right)} | + | \textbf{(D)}\ \log{\left(\frac{s}{P}\right)} + \log{(1 + k)}\qquad |
− | \textbf{(E)}\ \frac{\log{(s)}}{\log{(P(1 | + | \textbf{(E)}\ \frac{\log{(s)}}{\log{(P(1 + k))}}</math> |
==Solution== | ==Solution== | ||
Line 24: | Line 24: | ||
==See also== | ==See also== | ||
− | {{AHSME box|year=1958|num-b=11|num-a=13}} | + | {{AHSME 50p box|year=1958|num-b=11|num-a=13}} |
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 22:08, 13 March 2015
Problem
If then equals:
Solution
Take the of each side.
See also
1958 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.