Difference between revisions of "1958 AHSME Problems/Problem 7"

(wrote solution)
 
m (Solution)
 
(2 intermediate revisions by one other user not shown)
Line 11: Line 11:
 
==Solution==
 
==Solution==
  
The slope of the line is <math> \frac{ \Delta y }{ \Delta x} = \frac{9-1}{3-(-1)} = 2</math>. Using the formula for the point-slope form of a line, we have <math> y-y_1 = m(x-x_1)</math>, so <math>y-1=2(x-(-1)) \to y-1=2(x+1)</math>. The x-intercept is the x-value when <math>y=0</math>, so we substitute 0 for y:
+
The slope of the line is <math> \frac{ \Delta y }{ \Delta x} = \frac{9-1}{3-(-1)} = 2</math>. Using the formula for the point-slope form of a line, we have <math> y-y_1 = m(x-x_1)</math>, so <math>y-1=2(x-(-1)) \to y-1=2(x+1)</math>.
 +
 
 +
The x-intercept is the x-value when <math>y=0</math>, so we substitute 0 for y:
  
 
<cmath>0-1=2x+2</cmath>
 
<cmath>0-1=2x+2</cmath>
Line 20: Line 22:
  
 
<cmath>x = -\frac{3}{2} \to \boxed{\text{(A)}}</cmath>
 
<cmath>x = -\frac{3}{2} \to \boxed{\text{(A)}}</cmath>
 +
 +
==See Also==
 +
 +
 +
{{AHSME 50p box|year=1958|num-b=6|num-a=8}}
 +
{{MAA Notice}}

Latest revision as of 05:09, 3 October 2014

Problem

A straight line joins the points $(-1,1)$ and $(3,9)$. Its $x$-intercept is:

$\textbf{(A)}\ -\frac{3}{2}\qquad  \textbf{(B)}\ -\frac{2}{3}\qquad  \textbf{(C)}\ \frac{2}{5}\qquad  \textbf{(D)}\ 2\qquad  \textbf{(E)}\ 3$

Solution

The slope of the line is $\frac{ \Delta y }{ \Delta x} = \frac{9-1}{3-(-1)} = 2$. Using the formula for the point-slope form of a line, we have $y-y_1 = m(x-x_1)$, so $y-1=2(x-(-1)) \to y-1=2(x+1)$.

The x-intercept is the x-value when $y=0$, so we substitute 0 for y:

\[0-1=2x+2\]

\[-1=2x+2\]

\[2x = -3\]

\[x = -\frac{3}{2} \to \boxed{\text{(A)}}\]

See Also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png