Difference between revisions of "1951 AHSME Problems/Problem 26"

(See Also)
 
(4 intermediate revisions by 3 users not shown)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
Unsolved
+
Multiplying both sides by <math>(x-1)(m-1)m</math> gives us
 +
<cmath>xm(x-1)-m(m+1)=x(x-1)(m-1)</cmath>
 +
<cmath>x^2m-xm-m^2-m=x^2m-xm-x^2+x</cmath>
 +
<cmath>-m^2-m=-x^2+x</cmath>
 +
<cmath>x^2-x-(m^2+m)=0</cmath>
 +
The roots of this quadratic are equal if and only if its discriminant
 +
(<math>b^2-4ac</math>) evaluates to 0.
 +
This means
 +
<cmath>(-1)^2-4(-m^2-m)=0</cmath>
 +
<cmath>4m^2+4m+1=0</cmath>
 +
<cmath>(2m+1)^2=0</cmath>
 +
<cmath>m=-\frac{1}{2} \Rightarrow \boxed{\textbf{(E)}}</cmath>
  
==See Also==
 
 
== See Also ==
 
== See Also ==
 
{{AHSME 50p box|year=1951|num-b=25|num-a=27}}  
 
{{AHSME 50p box|year=1951|num-b=25|num-a=27}}  

Latest revision as of 10:49, 16 April 2014

Problem

In the equation $\frac {x(x - 1) - (m + 1)}{(x - 1)(m - 1)} = \frac {x}{m}$ the roots are equal when

$\textbf{(A)}\ m = 1\qquad\textbf{(B)}\ m =\frac{1}{2}\qquad\textbf{(C)}\ m = 0\qquad\textbf{(D)}\ m =-1\qquad\textbf{(E)}\ m =-\frac{1}{2}$

Solution

Multiplying both sides by $(x-1)(m-1)m$ gives us \[xm(x-1)-m(m+1)=x(x-1)(m-1)\] \[x^2m-xm-m^2-m=x^2m-xm-x^2+x\] \[-m^2-m=-x^2+x\] \[x^2-x-(m^2+m)=0\] The roots of this quadratic are equal if and only if its discriminant ($b^2-4ac$) evaluates to 0. This means \[(-1)^2-4(-m^2-m)=0\] \[4m^2+4m+1=0\] \[(2m+1)^2=0\] \[m=-\frac{1}{2} \Rightarrow \boxed{\textbf{(E)}}\]

See Also

1951 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png