Difference between revisions of "1962 AHSME Problems/Problem 33"

(Created page with "==Problem== The set of <math>x</math>-values satisfying the inequality <math>2 \leq |x-1| \leq 5</math> is: <math> \textbf{(A)}\ -4\leq x\leq-1\text{ or }3\leq x\leq 6\qquad</m...")
 
 
(One intermediate revision by one other user not shown)
Line 10: Line 10:
  
 
==Solution==
 
==Solution==
"Unsolved"
+
This inequality can be split into two inequalities:
 +
<math>2\le x-1\le5</math> or <math>2\le1-x\le5</math>. Solving for x gives
 +
<math>3\le x\le6</math> or <math>-4\le x\le-1</math>. <math>\boxed{\textbf{(A)}}</math>

Latest revision as of 16:45, 17 April 2014

Problem

The set of $x$-values satisfying the inequality $2 \leq |x-1| \leq 5$ is:

$\textbf{(A)}\ -4\leq x\leq-1\text{ or }3\leq x\leq 6\qquad$

$\textbf{(B)}\ 3\leq x\leq 6\text{ or }-6\leq x\leq-3\qquad\textbf{(C)}\ x\leq-1\text{ or }x\geq 3\qquad$

$\textbf{(D)}\ -1\leq x\leq 3\qquad\textbf{(E)}\ -4\leq x\leq 6$


Solution

This inequality can be split into two inequalities: $2\le x-1\le5$ or $2\le1-x\le5$. Solving for x gives $3\le x\le6$ or $-4\le x\le-1$. $\boxed{\textbf{(A)}}$