Difference between revisions of "1962 AHSME Problems/Problem 1"

(Problem)
m (See Also)
 
(4 intermediate revisions by one other user not shown)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
''Unsolved''
+
We simplify the expression to yield:
 +
 
 +
<math> \dfrac{1^{4y-1}}{5^{-1}+3^{-1}}=\dfrac{1}{5^{-1}+3^{-1}}=\dfrac{1}{\dfrac{1}{5}+\dfrac{1}{3}}=\dfrac{1}{\dfrac{8}{15}}=\dfrac{15}{8} </math>.
 +
 
 +
Thus our answer is <math>\boxed{\textbf{(D)}\ \frac{15}{8}}</math>.
 +
 
 +
==See Also==
 +
{{AHSME 40p box|year=1962|before=First Question|num-a=2}}
 +
 
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 21:11, 3 October 2014

Problem

The expression $\frac{1^{4y-1}}{5^{-1}+3^{-1}}$ is equal to:

$\textbf{(A)}\ \frac{4y-1}{8}\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ \frac{15}{2}\qquad\textbf{(D)}\ \frac{15}{8}\qquad\textbf{(E)}\ \frac{1}{8}$

Solution

We simplify the expression to yield:

$\dfrac{1^{4y-1}}{5^{-1}+3^{-1}}=\dfrac{1}{5^{-1}+3^{-1}}=\dfrac{1}{\dfrac{1}{5}+\dfrac{1}{3}}=\dfrac{1}{\dfrac{8}{15}}=\dfrac{15}{8}$.

Thus our answer is $\boxed{\textbf{(D)}\ \frac{15}{8}}$.

See Also

1962 AHSC (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png