Difference between revisions of "Power set"
(→Method 2) |
|||
(One intermediate revision by the same user not shown) | |||
Line 23: | Line 23: | ||
==Size for Finite Sets== | ==Size for Finite Sets== | ||
− | The number of [[element|elements]] in a [[power set]] of a set with n elements is <math>2^n</math> for all finite sets. | + | The number of [[element|elements]] in a [[power set]] of a set with n elements is <math>2^n</math> for all finite sets. This can be proven in a number of ways: |
===Method 1=== | ===Method 1=== | ||
Line 37: | Line 37: | ||
We proceed with [[induction]]. | We proceed with [[induction]]. | ||
− | Let S be the set with n elements. If n=0, then S is the empty set. Then | + | Let <math>S</math> be the set with <math>n</math> elements. If <math>n=0</math>, then <math>S</math> is the empty set. Then |
<math>P(S)=\{\emptyset \}</math> | <math>P(S)=\{\emptyset \}</math> | ||
Line 59: | Line 59: | ||
For an element x, it can be either in or out of a subset. Since there are n elements, and each different choice of in/out leads to a different subset, there are <math>2^n</math> elements in the power sum. | For an element x, it can be either in or out of a subset. Since there are n elements, and each different choice of in/out leads to a different subset, there are <math>2^n</math> elements in the power sum. | ||
− | |||
==See Also== | ==See Also== |
Latest revision as of 10:44, 8 March 2018
The power set of a given set is the set of all subsets of that set. It is also sometimes denoted by .
Contents
Examples
The empty set has only one subset, itself. Thus .
A set with a single element has two subsets, the empty set and the entire set. Thus .
A set with two elements has four subsets, and .
Similarly, for any finite set with elements, the power set has elements.
Size Comparison
Note that for any nonnegative integer , and so for any finite set , (where absolute value signs here denote the cardinality of a set). The analogous result is also true for infinite sets (and thus for all sets): for any set , the cardinality of the power set is strictly larger than the cardinality of the set itself.
Proof
There is a natural injection taking , so . Suppose for the sake of contradiction that . Then there is a bijection . Let be defined by . Then and since is a bijection, .
Now, note that by definition if and only if , so if and only if . This is a clear contradiction. Thus the bijection cannot really exist and so , as desired.
Note that this proof does not rely upon either the Continuum Hypothesis or the Axiom of Choice. It is a good example of a diagonal argument, a method pioneered by the mathematician Georg Cantor.
Size for Finite Sets
The number of elements in a power set of a set with n elements is for all finite sets. This can be proven in a number of ways:
Method 1
Either an element in the power set can have 0 elements, one element, ... , or n elements. There are ways to have no elements, ways to have one element, ... , and ways to have n elements. We add:
as desired.
Method 2
We proceed with induction.
Let be the set with elements. If , then is the empty set. Then
and has element.
Now let's say that the theorem stated above is true or n=k. We shall prove it for k+1.
Let's say that Q has k+1 elements.
In set Q, if we leave element x out, there will be elements in the power set. Now we include the sets that do include x. But that's just , since we are choosing either 0 1, ... or k elements to go with x. Therefore, if there are elements in the power set of a set that has k elements, then there are elements in the power set of a set that has k+1 elements.
Therefore, the number of elements in a power set of a set with n elements is .
Method 3
We demonstrated in Method 2 that if S is the empty set, it works.
Now let's say that S has at least one element.
For an element x, it can be either in or out of a subset. Since there are n elements, and each different choice of in/out leads to a different subset, there are elements in the power sum.
See Also
External Links
- Power Set at Wolfram MathWorld.