Difference between revisions of "Mock AIME 1 2013 Problems"

(Problem 14)
m (Remove double redirect)
(Tag: Redirect target changed)
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
== Problem 1 ==
+
#redirect [[2013 Mock AIME I Problems]]
Two circles <math>C_1</math> and <math>C_2</math>, each of unit radius, have centers <math>A_1</math> and <math>A_2</math> such that <math>A_1A_2=6</math>.  Let <math>P</math> be the midpoint of <math>A_1A_2</math> and let <math>C_#</math> be a circle externally tangent to both <math>C_1</math> and <math>C_2</math>.  <math>C_1</math> and <math>C_3</math> have a common tangent that passes through <math>P</math>.  If this tangent is also a common tangent to <math>C_2</math> and <math>C_1</math>, find the radius of circle <math>C_3</math>.
 
 
 
[[2013 Mock AIME I Problems/Problem 1|Solution]]
 
 
 
== Problem 2 ==
 
Find the number of ordered positive integer pairs <math>(a,b,c)</math> such that <math>a</math> evenly divides <math>b</math>, <math>b+1</math> evenly divides <math>c</math>, and <math>c-a=10</math>.
 
 
 
[[2013 Mock AIME I Problems/Problem 2|Solution]]
 
 
 
== Problem 3 ==
 
 
 
[[2013 Mock AIME I Problems/Problem 3|Solution]]
 
 
 
 
 
== Problem 4 ==
 
 
 
[[2013 Mock AIME I Problems/Problem 4|Solution]]
 
 
 
 
 
== Problem 5 ==
 
 
 
[[2013 Mock AIME I Problems/Problem 5|Solution]]
 
 
 
 
 
==Problem 6==
 
 
 
[[2013 Mock AIME I Problems/Problem 6|Solution]]
 
 
 
 
 
==Problem 7==
 
 
 
[[2013 Mock AIME I Problems/Problem 7|Solution]]
 
 
 
 
 
== Problem 8 ==
 
 
 
[[2013 Mock AIME I Problems/Problem 8|Solution]]
 
 
 
 
 
==Problem 9==
 
 
 
[[2013 Mock AIME I Problems/Problem 9|Solution]]
 
 
 
 
 
==Problem 10==
 
 
 
[[2013 Mock AIME I Problems/Problem 10|Solution]]
 
 
 
 
 
== Problem 11 ==
 
 
 
[[2013 Mock AIME I Problems/Problem 11|Solution]]
 
 
 
== Problem 12 ==
 
 
 
[[2013 Mock AIME I Problems/Problem 12|Solution]]
 
 
 
== Problem 13 ==
 
 
 
[[2013 Mock AIME I Problems/Problem 13|Solution]]
 
 
 
== Problem 14 ==
 
Let <cmath>P(x) = x^{2013}+4x^{2012}+9x^{2011}+16x^{2010}+\cdots + 4052169x + 4056196 = \sum_{j=1}^{2014}j^2x^{2014-j}.</cmath> If <math>a_1, a_2, \cdots a_{2013}</math> are its roots, then compute the remainder when <math>a_1^{997}+a_2^{997}+\cdots + a_{2013}^{997}</math> is divided by 997.
 
[[2013 Mock AIME I Problems/Problem 14|Solution]]
 
 
 
==Problem 15==
 
 
 
[[2013 Mock AIME I Problems/Problem 15|Solution]]
 

Latest revision as of 23:28, 3 June 2022