Difference between revisions of "1991 AHSME Problems/Problem 7"
m (→Solution) |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | If <math>x=\frac{a}{b}</math>, <math>a\neq b</math> and <math>b\neq 0</math>, then <math>\frac{a+b}{a-b}=</math> | ||
(A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math> | (A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math> | ||
+ | |||
+ | ==Solution== | ||
+ | <math>\frac{a+b}{a-b}= \frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{x+1}{x-1}</math>, so the answer is <math>\boxed{B}</math>. | ||
+ | |||
+ | == See also == | ||
+ | {{AHSME box|year=1991|num-b=6|num-a=8}} | ||
+ | |||
+ | [[Category: Introductory Algebra Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 02:10, 28 September 2014
Problem
If , and , then
(A) (B) (C) (D) (E)
Solution
, so the answer is .
See also
1991 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.