Difference between revisions of "1989 AHSME Problems/Problem 2"

m
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<math>\sqrt{\frac{1}{9}+\frac{1}{16}}=\sqrt{\frac{25}{9\cdot 16}}=\frac{5}{12}</math> and hence the answer is D.
+
== Problem ==
 +
 
 +
<math> \sqrt{\frac{1}{9}+\frac{1}{16}}= </math>
 +
 
 +
<math> \textrm{(A)}\ \frac{1}5\qquad\textrm{(B)}\ \frac{1}4\qquad\textrm{(C)}\ \frac{2}7\qquad\textrm{(D)}\ \frac{5}{12}\qquad\textrm{(E)}\ \frac{7}{12} </math>
 +
 
 +
== Solution ==
 +
 
 +
<math>\sqrt{\frac{1}{9}+\frac{1}{16}}=\sqrt{\frac{25}{9\cdot 16}}=\frac{5}{12}</math> and hence the answer is <math>\fbox{D}</math>.
 +
 
 +
 
 +
== See also ==
 +
{{AHSME box|year=1989|num-b=1|num-a=3}} 
 +
 
 +
[[Category: Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 06:39, 22 October 2014

Problem

$\sqrt{\frac{1}{9}+\frac{1}{16}}=$

$\textrm{(A)}\ \frac{1}5\qquad\textrm{(B)}\ \frac{1}4\qquad\textrm{(C)}\ \frac{2}7\qquad\textrm{(D)}\ \frac{5}{12}\qquad\textrm{(E)}\ \frac{7}{12}$

Solution

$\sqrt{\frac{1}{9}+\frac{1}{16}}=\sqrt{\frac{25}{9\cdot 16}}=\frac{5}{12}$ and hence the answer is $\fbox{D}$.


See also

1989 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png