Difference between revisions of "1984 AHSME Problems/Problem 30"
(→Added Solution 2) |
|||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | For any [[complex number]] <math> w=a+bi </math>, <math> |w| </math> is defined to be the [[real number]] <math> \sqrt{a^2+b^2} </math>. If <math> w=\cos40^\circ+i\sin40^\circ </math>, then | + | For any [[complex number]] <math> w=a+bi </math>, <math> |w| </math> is defined to be the [[real number]] <math> \sqrt{a^2+b^2} </math>. If <math> w=\cos40^\circ+i\sin40^\circ </math>, then <math> |w+2w^2+3w^3+...+9w^9|^{-1} </math> equals |
− | <math> | + | <math> \text{(A) }\frac{1}{9}\sin40^\circ \qquad \text{(B) }\frac{2}{9}\sin20^\circ \qquad \text{(C) } \frac{1}{9}\cos40^\circ \qquad \text{(D) }\frac{1}{18}\cos20^\circ \qquad \text{(E) } \text{None of these} </math> |
− | + | ==Solution 1== | |
− | |||
− | |||
− | |||
− | ==Solution== | ||
Let <math>S=w+2w^2+3w^3+...+9w^9</math>. Note that | Let <math>S=w+2w^2+3w^3+...+9w^9</math>. Note that | ||
Line 17: | Line 13: | ||
<cmath>S(1-w)=\sum_{i=1}^{9}\sum_{j=i}^{9} w^j(1-w)</cmath> | <cmath>S(1-w)=\sum_{i=1}^{9}\sum_{j=i}^{9} w^j(1-w)</cmath> | ||
− | + | By the geometric series formula, <math>\sum_{j=i}^{9} w^j(1-w)</math> is simply <math>w^i-w^{10}</math>. Therefore | |
− | |||
<cmath>S(1-w)=\sum_{i=1}^{9} w^i-w^{10}=(w+w^2+\cdots +w^9)-9w^{10}</cmath> | <cmath>S(1-w)=\sum_{i=1}^{9} w^i-w^{10}=(w+w^2+\cdots +w^9)-9w^{10}</cmath> | ||
Line 25: | Line 20: | ||
<cmath>(w+w^2+\cdots +w^9)(1-w)=w-w^{10}=w(1-w^{9})=0</cmath> | <cmath>(w+w^2+\cdots +w^9)(1-w)=w-w^{10}=w(1-w^{9})=0</cmath> | ||
− | This shows that <math>S=\frac{-9w^{10}}{1-w}</math>. Note that <math>w^{10}=w\cdot w^9=w</math>, so <math>S=\frac{-9w}{1-w}</math>. It's not hard to show that <math>|S|^{-1}=|S^{-1}|=|-S^{-1}|</math>, so the number we seek is equal to <math>|\frac{1-w}{9w}|</math>. | + | This shows that <math>S=\frac{-9w^{10}}{1-w}</math>. Note that <math>w^{10}=w\cdot w^9=w</math>, so <math>S=\frac{-9w}{1-w}</math>. |
+ | |||
+ | It's not hard to show that <math>\left|S\right|^{-1}=\left|S^{-1}\right|=\left|-S^{-1}\right|</math>, so the number we seek is equal to <math>\left|\frac{1-w}{9w}\right|</math>. | ||
Now we plug <math>w</math> into the fraction: | Now we plug <math>w</math> into the fraction: | ||
− | <cmath>\frac{1-w}{9w}=\frac{(1-\cos{40})-i\sin{40}}{9\cos{40}+9i\sin{40}}</cmath> | + | <cmath>\frac{1-w}{9w}=\frac{(1-\cos{40^{\circ}})-i\sin{40^{\circ}}}{9\cos{40}+9i\sin{40^{\circ}}}</cmath> |
− | We multiply the numerator and denominator by <math>9\cos{40}-9i\sin{40}</math> and simplify to get | + | We multiply the numerator and denominator by <math>9\cos{40^{\circ}}-9i\sin{40^{\circ}}</math> and simplify to get |
− | <cmath>\frac{1-w}{9w}=\frac{(\cos{40}-i\sin{40})((1-\cos{40})-i\sin{40})}{9}</cmath> | + | <cmath>\frac{1-w}{9w}=\frac{(\cos{40^{\circ}}-i\sin{40^{\circ}})((1-\cos{40^{\circ}})-i\sin{40^{\circ}})}{9}</cmath> |
− | <cmath>=\frac{\cos{40}-\cos^2{40}-\sin^2{40}+i(-\sin{40}+\sin{40}\cos{40}-\sin{40}\cos{40})}{9}</cmath> | + | <cmath>=\frac{\cos{40^{\circ}}-\cos^2{40^{\circ}}-\sin^2{40^{\circ}}+i(-\sin{40^{\circ}}+\sin{40^{\circ}}\cos{40^{\circ}}-\sin{40^{\circ}}\cos{40^{\circ}})}{9}</cmath> |
− | <cmath>=\frac{(\cos{40}-1)-i\sin{40}}{9}</cmath> | + | <cmath>=\frac{(\cos{40^{\circ}}-1)-i\sin{40^{\circ}}}{9}</cmath> |
The absolute value of this is | The absolute value of this is | ||
− | <cmath>|\frac{1-w}{9w}|=\frac{1}{9}\sqrt{(\cos{40}-1)^2+\sin^2{40}}=\frac{1}{9}\sqrt{1-2\cos{40}+\cos^2{40}+\sin^2{40}}=\frac{\sqrt{2}}{9}\sqrt{1-\cos{40}}</cmath> | + | <cmath>\left|\frac{1-w}{9w}\right|=\frac{1}{9}\sqrt{(\cos{40^{\circ}}-1)^2+\sin^2{40^{\circ}}}=\frac{1}{9}\sqrt{1-2\cos{40^{\circ}}+\cos^2{40^{\circ}}+\sin^2{40^{\circ}}}=\frac{\sqrt{2}}{9}\sqrt{1-\cos{40^{\circ}}}</cmath> |
+ | |||
+ | Note that, from double angle formulas, <math>\cos{40^{\circ}}=\cos^2{20^{\circ}}-\sin^2{20^{\circ}}</math>, so <math>1-\cos{40^{\circ}}=\cos^2{20^{\circ}}+\sin^2{20^{\circ}}-(\cos^2{20^{\circ}}-\sin^2{20^{\circ}})=2\sin^2{20^{\circ}}</math>. Therefore | ||
+ | |||
+ | <cmath>\left|\frac{1-w}{9w}\right|=\frac{\sqrt{2}}{9} \sqrt{2\sin^2{20^{\circ}}}</cmath> | ||
+ | |||
+ | <cmath>=\frac{2}{9}\sin{20^{\circ}}</cmath> | ||
+ | |||
+ | Therefore the correct answer is <math>\boxed{\textbf{(B)}}</math>. | ||
+ | |||
+ | ==Solution 2== | ||
+ | Notice that <math>w = \cos40^\circ+i\sin40^\circ = \cos\left(\frac{2\pi}{9}\right)+i\sin\left(\frac{2\pi}{9}\right)</math> is the primitive root of the equation <math>x^9 = 1</math>. | ||
+ | |||
+ | Consider the simple geometric progression, | ||
+ | |||
+ | <cmath>f(x) = 1 + x + x^2 +\cdots + x^9 = \frac{x^{10} - 1}{x - 1}</cmath> | ||
+ | |||
+ | Differentiating this equation (using the [https://artofproblemsolving.com/wiki/index.php/Quotient_Rule Quotient Rule]), we obtain the following equation, | ||
+ | |||
+ | <cmath>f'(x) = 1 + 2x + 3x^2 + \cdots + 9x^8 = \frac{9x^{10} - 10x^9 + 1}{(x - 1)^2}</cmath> | ||
+ | |||
+ | Now, we can evaluate the given expression, | ||
− | + | <cmath>w + 2w^2 + 3w^3 + \cdots + 9w^9 = w \cdot (1+2w+3w^2+...+9w^8)</cmath> | |
+ | <cmath> = w\cdot f'(w)</cmath> | ||
+ | <cmath>= w\cdot\frac{9w^{10} - 10w^9 + 1}{(w - 1)^2}</cmath> | ||
+ | <cmath> = \frac{9w}{w-1} \; (\because w^9 = 1)</cmath> | ||
− | + | Finally, we can calculate the given modulus, | |
− | <cmath>=\frac{2}{9}\sin{20}</cmath> | + | <cmath>\lvert w+2w^2+3w^3+...+9w^9 \rvert^{-1} = \lvert \frac{1}{9}\cdot\left(1 - w^8) \right) \rvert</cmath> |
+ | <cmath>= \lvert \frac{1}{9}\cdot\left(1 - \cos\left(320^\circ\right)+i\sin\left(320^\circ\right)) \right) \rvert</cmath> | ||
+ | <cmath>= \frac{1}{9}\sqrt{\left(1 - \cos\left(320^\circ\right)\right)^2+\left(\sin\left(320^\circ\right)\right)^2}</cmath> | ||
+ | <cmath>= \frac{1}{9}\sqrt{2 - 2\cos\left(320^\circ\right)}</cmath> | ||
+ | <cmath>= \frac{2}{9}\sin\left(160^\circ\right)</cmath> | ||
+ | <cmath>= \boxed{\frac{2}{9}\sin\left(20^\circ\right)}</cmath> | ||
− | + | ~ [https://artofproblemsolving.com/wiki/index.php/User:Plusone plusone] | |
==See Also== | ==See Also== | ||
{{AHSME box|year=1984|num-b=29|after=Last Problem}} | {{AHSME box|year=1984|num-b=29|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 09:04, 8 September 2024
Contents
Problem
For any complex number , is defined to be the real number . If , then equals
Solution 1
Let . Note that
Now we multiply by :
By the geometric series formula, is simply . Therefore
A simple application of De Moivre's Theorem shows that is a ninth root of unity (), so
This shows that . Note that , so .
It's not hard to show that , so the number we seek is equal to .
Now we plug into the fraction:
We multiply the numerator and denominator by and simplify to get
The absolute value of this is
Note that, from double angle formulas, , so . Therefore
Therefore the correct answer is .
Solution 2
Notice that is the primitive root of the equation .
Consider the simple geometric progression,
Differentiating this equation (using the Quotient Rule), we obtain the following equation,
Now, we can evaluate the given expression,
Finally, we can calculate the given modulus,
~ plusone
See Also
1984 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.