Difference between revisions of "1951 AHSME Problems/Problem 1"

(Problem: fix answer choice)
 
Line 2: Line 2:
 
The percent that <math>M</math> is greater than <math>N</math> is:
 
The percent that <math>M</math> is greater than <math>N</math> is:
  
<math>(\mathrm{A})\ \frac{100(M-N)}{M} \qquad (\mathrm{B})\ \frac{100(M-N)}{N} \qquad (\mathrm{C})\ \frac{M-N}{N} \qquad (\mathrm{D})\ \frac{M-N}{N} \qquad (\mathrm{E})\ \frac{100(M+N)}{N}</math>
+
<math>(\mathrm{A})\ \frac{100(M-N)}{M} \qquad (\mathrm{B})\ \frac{100(M-N)}{N} \qquad (\mathrm{C})\ \frac{M-N}{N} \qquad (\mathrm{D})\ \frac{M-N}{M} \qquad (\mathrm{E})\ \frac{100(M+N)}{N}</math>
  
 
== Solution ==
 
== Solution ==

Latest revision as of 14:40, 13 November 2024

Problem

The percent that $M$ is greater than $N$ is:

$(\mathrm{A})\ \frac{100(M-N)}{M} \qquad (\mathrm{B})\ \frac{100(M-N)}{N} \qquad (\mathrm{C})\ \frac{M-N}{N} \qquad (\mathrm{D})\ \frac{M-N}{M} \qquad (\mathrm{E})\ \frac{100(M+N)}{N}$

Solution

$M-N$ is the amount by which $M$ is greater than $N$. We divide this by $N$ to get the percent by which $N$ is increased in the form of a decimal, and then multiply by $100$ to make it a percentage. Therefore, the answer is $\boxed{\mathrm{(B)}\ \dfrac{100(M-N)}{N}}$.


See Also

1951 AHSC (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png