Difference between revisions of "2000 AMC 8 Problems/Problem 14"

(Solution 4)
 
(14 intermediate revisions by 6 users not shown)
Line 4: Line 4:
  
 
<math>\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 8 \qquad \text{(E)}\ 9</math>
 
<math>\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 8 \qquad \text{(E)}\ 9</math>
 +
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/7an5wU9Q5hk?t=1552
  
 
==Solution==
 
==Solution==
Line 10: Line 13:
  
 
Powers of <math>99</math> have the exact same property, so <math>99^{99}</math> also has a units digit of <math>9</math>. <math>9+9=18</math> which has a units digit of <math>8</math>, so the answer is <math>\boxed{D}</math>.
 
Powers of <math>99</math> have the exact same property, so <math>99^{99}</math> also has a units digit of <math>9</math>. <math>9+9=18</math> which has a units digit of <math>8</math>, so the answer is <math>\boxed{D}</math>.
 +
 +
==Solution 2==
 +
Using modular arithmetic:
 +
<cmath>99 \equiv 9 \equiv -1 \pmod{10}</cmath>
 +
 +
Similarly,
 +
<cmath>19 \equiv 9 \equiv -1 \pmod{10}</cmath>
 +
 +
We have
 +
<cmath>(-1)^{19} + (-1)^{99} = -1 + -1 \equiv \boxed{(\textbf{D}) \ 8} \pmod{10}</cmath>
 +
 +
-ryjs
 +
 +
==Solution 3==
 +
Experimentation gives
 +
<cmath>\text{any number ending with }9^{\text{something even}} = \text{has units digit }1</cmath>
 +
 +
<cmath>\text{any number ending with }9^{\text{something odd}} = \text{has units digit }9</cmath>
 +
 +
Using this we have
 +
<cmath>19^{19} + 99^{99}</cmath>
 +
<cmath>9^{19} + 9^{99}</cmath>
 +
 +
Both <math>19</math> and <math>99</math> are odd, so we are left with
 +
<cmath>9+9=18,</cmath> which has units digit <math>\boxed{(\textbf{D}) \ 8}.</math>
 +
-ryjs
 +
 +
==Solution 4==
 +
<math>19^{19}+99^{99}=</math>36972963764972677265718790562880544059566876428174110243025997242355257045527752342141065001012823272794097888
 +
9548326540119429996769494359451621570193644014418071060667659303363419435659472789623878 which ends in 8. :) If you are really stupid and have time (like about 3 hours), this is a real brainless bash.
 +
 +
--hefei417
  
 
==See Also==
 
==See Also==

Latest revision as of 19:24, 24 November 2024

Problem

What is the units digit of $19^{19} + 99^{99}$?

$\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 8 \qquad \text{(E)}\ 9$

Video Solution by OmegaLearn

https://youtu.be/7an5wU9Q5hk?t=1552

Solution

Finding a pattern for each half of the sum, even powers of $19$ have a units digit of $1$, and odd powers of $19$ have a units digit of $9$. So, $19^{19}$ has a units digit of $9$.

Powers of $99$ have the exact same property, so $99^{99}$ also has a units digit of $9$. $9+9=18$ which has a units digit of $8$, so the answer is $\boxed{D}$.

Solution 2

Using modular arithmetic: \[99 \equiv 9 \equiv -1 \pmod{10}\]

Similarly, \[19 \equiv 9 \equiv -1 \pmod{10}\]

We have \[(-1)^{19} + (-1)^{99} = -1 + -1 \equiv \boxed{(\textbf{D}) \ 8} \pmod{10}\]

-ryjs

Solution 3

Experimentation gives \[\text{any number ending with }9^{\text{something even}} = \text{has units digit }1\]

\[\text{any number ending with }9^{\text{something odd}} = \text{has units digit }9\]

Using this we have \[19^{19} + 99^{99}\] \[9^{19} + 9^{99}\]

Both $19$ and $99$ are odd, so we are left with \[9+9=18,\] which has units digit $\boxed{(\textbf{D}) \ 8}.$ -ryjs

Solution 4

$19^{19}+99^{99}=$36972963764972677265718790562880544059566876428174110243025997242355257045527752342141065001012823272794097888 9548326540119429996769494359451621570193644014418071060667659303363419435659472789623878 which ends in 8. :) If you are really stupid and have time (like about 3 hours), this is a real brainless bash.

--hefei417

See Also

2000 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png