Difference between revisions of "2009 AMC 12A Problems/Problem 4"

(See Also)
m (Solution)
 
(3 intermediate revisions by 3 users not shown)
Line 8: Line 8:
 
== Solution ==
 
== Solution ==
  
As all five options are divisible by <math>5</math>, we may not use any pennies. (This is because a penny is the only coin that is not divisible by <math>5</math>, and if we used between <math>1</math> and <math>4</math> pennies, the sum would not be divisible by <math>5</math>.)
+
Note that if we use any pennies whatsoever (one, two, three, or four of them), then the total amount of money would be nonzero mod <math>5</math>; as all five options are divisible by <math>5</math>, we conclude that we may not use any pennies.  
  
 
Hence the smallest coin we can use is a nickel, and thus the smallest amount we can get is <math>4\cdot 5 = 20</math>. Therefore the option that is not reachable is <math>\boxed{15}</math> <math>\Rightarrow</math> <math>(A)</math>.
 
Hence the smallest coin we can use is a nickel, and thus the smallest amount we can get is <math>4\cdot 5 = 20</math>. Therefore the option that is not reachable is <math>\boxed{15}</math> <math>\Rightarrow</math> <math>(A)</math>.
Line 17: Line 17:
 
* <math>45 = 25+10+5+5</math>
 
* <math>45 = 25+10+5+5</math>
 
* <math>55 = 25+10+10+10</math>
 
* <math>55 = 25+10+10+10</math>
 +
 +
(Minor clarity edit by Technodoggo)
  
 
== See Also ==
 
== See Also ==
  
 +
{{AMC10 box|year=2009|ab=A|num-b=1|num-a=3}}
 
{{AMC12 box|year=2009|ab=A|num-b=3|num-a=5}}
 
{{AMC12 box|year=2009|ab=A|num-b=3|num-a=5}}
{{AMC10 box|year=2009|ab=A|num-b=1|num-a=3}}
 
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 23:07, 31 August 2024

The following problem is from both the 2009 AMC 12A #4 and 2009 AMC 10A #2, so both problems redirect to this page.

Problem

Four coins are picked out of a piggy bank that contains a collection of pennies, nickels, dimes, and quarters. Which of the following could not be the total value of the four coins, in cents?

$\textbf{(A)}\ 15 \qquad \textbf{(B)}\ 25 \qquad \textbf{(C)}\ 35 \qquad \textbf{(D)}\ 45 \qquad \textbf{(E)}\ 55$

Solution

Note that if we use any pennies whatsoever (one, two, three, or four of them), then the total amount of money would be nonzero mod $5$; as all five options are divisible by $5$, we conclude that we may not use any pennies.

Hence the smallest coin we can use is a nickel, and thus the smallest amount we can get is $4\cdot 5 = 20$. Therefore the option that is not reachable is $\boxed{15}$ $\Rightarrow$ $(A)$.

We can verify that we can indeed get the other ones:

  • $25 = 10+5+5+5$
  • $35 = 10+10+10+5$
  • $45 = 25+10+5+5$
  • $55 = 25+10+10+10$

(Minor clarity edit by Technodoggo)

See Also

2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2009 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png