Difference between revisions of "2000 AMC 12 Problems/Problem 7"

(See also)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
How many positive [[integer]]s <math>\displaystyle b</math> have the property that <math>\displaystyle \log_{b} 729</math> is a positive integer?
+
How many positive [[integer]]s <math>b</math> have the property that <math>\log_{b} 729</math> is a positive integer?
  
 
<math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ 4 }  </math>
 
<math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ 4 }  </math>
  
 
== Solution ==
 
== Solution ==
If <math>\displaystyle \log_{b} 729 = n</math>, then <math>b^n = 729</math>. Since <math>729 = 3^6</math>, <math>\displaystyle b</math> must be <math>3</math> to some [[factor]] of 6. Thus, there are four (3, 9, 27, 729) possible values of <math>\displaystyle b</math> <math>\Longrightarrow \mathrm{E}</math>.
+
If <math>\log_{b} 729 = n</math>, then <math>b^n = 729</math>. Since <math>729 = 3^6</math>, <math>b</math> must be <math>3</math> to some [[factor]] of 6. Thus, there are four (3, 9, 27, 729) possible values of <math>b \Longrightarrow \boxed{\mathrm{E}}</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2000|num-b=6|num-a=8}}
 
{{AMC12 box|year=2000|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 22:49, 29 December 2023

Problem

How many positive integers $b$ have the property that $\log_{b} 729$ is a positive integer?

$\mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ 4 }$

Solution

If $\log_{b} 729 = n$, then $b^n = 729$. Since $729 = 3^6$, $b$ must be $3$ to some factor of 6. Thus, there are four (3, 9, 27, 729) possible values of $b \Longrightarrow \boxed{\mathrm{E}}$.

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png