Difference between revisions of "Algebraic topology"
ComplexZeta (talk | contribs) m (→Fundamental Groups) |
m |
||
(5 intermediate revisions by 5 users not shown) | |||
Line 5: | Line 5: | ||
Perhaps the simplest object of study in algebraic topology is the [[fundamental group]]. Let <math>X</math> be a [[path-connected]] topological space, and let <math>x\in X</math> be any point. Now consider all possible "loops" on <math>X</math> that start and end at <math>x</math>, i.e. all [[continuous function]]s <math>f:[0,1]\to X</math> with <math>f(0)=f(1)=x</math>. Call this collection <math>L</math>. Now define an [[equivalence relation]] <math>\sim</math> on <math>L</math> by saying that <math>p\sim q</math> if there is a continuous function <math>g:[0,1]\times[0,1]\to X</math> with <math>g(a,0)=p(a)</math>, <math>g(a,1)=q(a)</math>, and <math>g(0,b)=g(1,b)=x</math>. We call <math>g</math> a [[homotopy]]. Now define <math>\pi_1(X)=L/\sim</math>. That is, we equate any two elements of <math>L</math> which are equivalent under <math>\sim</math>. | Perhaps the simplest object of study in algebraic topology is the [[fundamental group]]. Let <math>X</math> be a [[path-connected]] topological space, and let <math>x\in X</math> be any point. Now consider all possible "loops" on <math>X</math> that start and end at <math>x</math>, i.e. all [[continuous function]]s <math>f:[0,1]\to X</math> with <math>f(0)=f(1)=x</math>. Call this collection <math>L</math>. Now define an [[equivalence relation]] <math>\sim</math> on <math>L</math> by saying that <math>p\sim q</math> if there is a continuous function <math>g:[0,1]\times[0,1]\to X</math> with <math>g(a,0)=p(a)</math>, <math>g(a,1)=q(a)</math>, and <math>g(0,b)=g(1,b)=x</math>. We call <math>g</math> a [[homotopy]]. Now define <math>\pi_1(X)=L/\sim</math>. That is, we equate any two elements of <math>L</math> which are equivalent under <math>\sim</math>. | ||
− | Unsurprisingly, the fundamental group is a group. The [[identity]] is the [[equivalence class]] containing the map <math>1:[0,1]\to X</math> given by <math>1(a)=x</math> for all <math>a\in[0,1]</math>. The [[inverse]] of a map <math>h</math> is the map <math>h^{-1}</math> given by <math>h^{-1}(a)=h(1-a)</math>. We can compose maps as follows: <math>g\cdot h(a)=\begin{cases} g(2a) & 0\le a\le 1/2, \\ h(2a-1) & 1/2\le a\le 1.\end{cases}</math> One can check that this is indeed [[well-defined]]. | + | Unsurprisingly, the fundamental group is a group. The [[identity]] is the [[equivalence class]] containing the map <math>1:[0,1]\to X</math> given by <math>1(a)=x</math> for all <math>a\in[0,1]</math>. The [[Function/Introduction#The_Inverse_of_a_Function | inverse]] of a map <math>h</math> is the map <math>h^{-1}</math> given by <math>h^{-1}(a)=h(1-a)</math>. We can compose maps as follows: <math>g\cdot h(a)=\begin{cases} g(2a) & 0\le a\le 1/2, \\ h(2a-1) & 1/2\le a\le 1.\end{cases}</math> One can check that this is indeed [[well-defined]]. |
Note that the fundamental group is not in general [[abelian group|abelian]]. For example, the fundamental group of a figure eight is the [[free group]] on two [[generator]]s, which is not abelian. However, the fundamental group of a circle is <math>{\mathbb{Z}}</math>, which is abelian. | Note that the fundamental group is not in general [[abelian group|abelian]]. For example, the fundamental group of a figure eight is the [[free group]] on two [[generator]]s, which is not abelian. However, the fundamental group of a circle is <math>{\mathbb{Z}}</math>, which is abelian. | ||
+ | |||
+ | More generally, if <math>X</math> is an [[h-space]], then <math>\pi_1(X)</math> is abelian, | ||
+ | for there is a second multiplication on <math>\pi_1(X)</math> given by <math>(\alpha\beta)(t) = \alpha(t)\beta(t)</math>, which is "compatible" with the concatenation in the following respect: | ||
+ | |||
+ | We say that two binary operations <math>\circ, \cdot</math> on a | ||
+ | set <math>S</math> are compatible if, for every <math>a,b,c,d \in S</math>, | ||
+ | <cmath>(a \circ b) \cdot (c \circ d) = (a \cdot c) \circ (b \cdot d).</cmath> | ||
+ | |||
+ | If <math>\circ,\cdot</math> share the same unit <math>e</math> (such that <math>a \cdot e = e \cdot a = a \circ e = e \circ a = a</math>) then <math>\cdot = \circ</math> and both are abelian[http://abogadosenpalmademallorca.com .] | ||
== Higher Homotopy Groups == | == Higher Homotopy Groups == | ||
− | |||
− | |||
== Homology and Cohomology == | == Homology and Cohomology == | ||
− | + | {{stub}} | |
+ | [[Category:Topology]] |
Latest revision as of 14:35, 1 December 2015
Algebraic topology is the study of topology using methods from abstract algebra. In general, given a topological space, we can associate various algebraic objects, such as groups and rings.
Fundamental Groups
Perhaps the simplest object of study in algebraic topology is the fundamental group. Let be a path-connected topological space, and let be any point. Now consider all possible "loops" on that start and end at , i.e. all continuous functions with . Call this collection . Now define an equivalence relation on by saying that if there is a continuous function with , , and . We call a homotopy. Now define . That is, we equate any two elements of which are equivalent under .
Unsurprisingly, the fundamental group is a group. The identity is the equivalence class containing the map given by for all . The inverse of a map is the map given by . We can compose maps as follows: One can check that this is indeed well-defined.
Note that the fundamental group is not in general abelian. For example, the fundamental group of a figure eight is the free group on two generators, which is not abelian. However, the fundamental group of a circle is , which is abelian.
More generally, if is an h-space, then is abelian, for there is a second multiplication on given by , which is "compatible" with the concatenation in the following respect:
We say that two binary operations on a set are compatible if, for every ,
If share the same unit (such that ) then and both are abelian.
Higher Homotopy Groups
Homology and Cohomology
This article is a stub. Help us out by expanding it.