|
|
(16 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
− | ==Day 1==
| + | '''2013 [[USAMO]]''' problems and solutions. The first link contains the full set of test problems. The rest contain each individual problem and its solution. |
− | ===Problem 1===
| |
− | In triangle <math> ABC</math>, points <math>P,Q,R</math> lie on sides respectively. Let , , denote the circumcircles of triangles , , , respectively. Given the fact that segment intersects , , again at respectively, prove that .
| |
| | | |
− | [[2013 USAMO Problems/Problem 1|Solution]] | + | *[[2013 USAMO Problems]] |
| + | *[[2013 USAMO Problems/Problem 1]] |
| + | *[[2013 USAMO Problems/Problem 2]] |
| + | *[[2013 USAMO Problems/Problem 3]] |
| + | *[[2013 USAMO Problems/Problem 4]] |
| + | *[[2013 USAMO Problems/Problem 5]] |
| + | *[[2013 USAMO Problems/Problem 6]] |
| | | |
− | ===Problem 2===
| + | {{USAMO newbox|year= 2013 |before=[[2012 USAMO]]|after=[[2014 USAMO]]}} |
− | For a positive integer plot equally spaced points around a circle. Label one of them , and place a marker at . One may move the marker forward in a clockwise direction to either the next point or the point after that. Hence there are a total of distinct moves available; two from each point. Let count the number of ways to advance around the circle exactly twice, beginning and ending at , without repeating a move. Prove that for all .
| |
− | | |
− | [[2013 USAMO Problems/Problem 2|Solution]]
| |
− | | |
− | ===Problem 3===
| |
− | Let be a positive integer. There are marks, each with a black side and a white side, arranged into an equilateral triangle, with the biggest row containing marks. Initially, each mark has the black side up. An operation is to choose a line parallel to the sides of the triangle, and flipping all the marks on that line. A configuration is called admissible if it can be obtained from the initial configuration by performing a finite number of operations. For each admissible configuration , let denote the smallest number of operations required to obtain from the initial configuration. Find the maximum value of , where varies over all admissible configurations.
| |
− | | |
− | | |
− | | |
− | [[2013 USAMO Problems/Problem 3|Solution]]
| |
− | | |
− | ==Day 2==
| |
− | ===Problem 4===
| |
− | | |
− | Find all real numbers satisfying
| |
− | | |
− | [[2013 USAMO Problems/Problem 4|Solution]]
| |
− | | |
− | ===Problem 5===
| |
− | Given postive integers and , prove that there is a positive integer such that the numbers and have the same number of occurrences of each non-zero digit when written in base ten.
| |
− | | |
− | [[2013 USAMO Problems/Problem 5|Solution]]
| |
− | | |
− | ===Problem 6===
| |
− | Let be a triangle. Find all points on segment satisfying the following property: If and are the intersections of line with the common external tangent lines of the circumcircles of triangles and , then
| |
− | [[2013 USAMO Problems/Problem 6|Solution]]
| |
− | | |
− | == See Also ==
| |
− | {{USAMO newbox|year= 2013|before=[[2012 USAMO]]|after=[[2014 USAMO]]}} | |