Difference between revisions of "1991 AHSME Problems/Problem 7"

(Created page with "\If <math>x=\frac{a}{b}</math>, <math>a\neq b</math> and <math>b\neq 0</math>, then <math>\frac{a+b}{a-b}=</math> (A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math>...")
 
m (Solution)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
\If <math>x=\frac{a}{b}</math>, <math>a\neq b</math> and <math>b\neq 0</math>, then <math>\frac{a+b}{a-b}=</math>
+
==Problem==
 +
If <math>x=\frac{a}{b}</math>, <math>a\neq b</math> and <math>b\neq 0</math>, then <math>\frac{a+b}{a-b}=</math>
  
 
(A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math>
 
(A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math>
 +
 +
==Solution==
 +
<math>\frac{a+b}{a-b}= \frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{x+1}{x-1}</math>, so the answer is <math>\boxed{B}</math>.
 +
 +
== See also ==
 +
{{AHSME box|year=1991|num-b=6|num-a=8}} 
 +
 +
[[Category: Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 02:10, 28 September 2014

Problem

If $x=\frac{a}{b}$, $a\neq b$ and $b\neq 0$, then $\frac{a+b}{a-b}=$

(A) $\frac{x}{x+1}$ (B) $\frac{x+1}{x-1}$ (C) $1$ (D) $x-\frac{1}{x}$ (E) $x+\frac{1}{x}$

Solution

$\frac{a+b}{a-b}= \frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{x+1}{x-1}$, so the answer is $\boxed{B}$.

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png